การเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์

การเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์

บทความนี้ได้รวมรวมเนื้อหาและตัวอย่างเกี่ยวกับ การเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์ ไว้อย่างหลากหลายและแสดงวิธีทำอย่างละเอียด  แต่ก่อนที่น้องๆจะได้เรียนรู้เรื่องนี้น้องสามารถทบทวน การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก และ การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก (กดลิ้งค์ที่ข้อความได้เลยค่ะ)  ซึ่งจะทำให้น้องๆ ได้เรียนรู้เรื่องต่างๆอย่างง่ายดาย ซึ่งได้นำเสนออกมาในรูปแบบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์

ฝึกการเขียนจำนวนในรูปเลขยกกำลังที่มีฐานเป็น 10 ดังนี้

10 = 10 = 10¹

100 = 10 x 10 = 10²

1,000 = 10 x 10 x 10 =10³

10,000 =10 x 10 x 10 x 10 = 10⁴

100,000 = 10 x 10 x 10 x 10 x 10 = 10⁵

1,000,000 = 10 x 10 x 10 x 10 x 10 x 10 = 10⁶

            สัญกรณ์วิทยาศาสตร์ใช้เพื่อแสดงการเขียนแทนจำนวนที่มีค่ามากๆ และจำนวนที่มีค่าน้อยมากๆ   โดยเขียนในรูปการคูณของเลขยกกำลังที่มีฐานเป็นสิบ และมีเลขชี้กำลังเป็นจำนวนเต็ม มีรูปทั่วไป คือ

A x 10n  เมื่อ 1 ≤ A < 10 และ n เป็นจำนวนเต็มใดๆ

การเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์

การเขียนจำนวนที่มีค่ามากๆ ให้อยู่ในรูปสัญกรณ์วิทยาศาสตร์

ตัวอย่างที่ 1 จงเขียนจำนวนต่อไปนี้ในรูปสัญกรณ์วิทยาศาสตร์

1.  200

2.  50,000

3.  38,000

4.  157,000

5.  320,000

วิธีทำ 

1.   200 = 2 x 100
             = 2 x 10²
ดังนั้น   200 = 2 x 10²

2.   50,000 = 5 x 10,000
                  = 5 x 10⁴
ดังนั้น   50,000 = 5 x 10⁴

3.   38,000 = 38 x 1000
                  = 38 x 10³
                  = (3.8 x 10) x 10³
                  = 3.8 x 10⁴
ดังนั้น 38,000 = 3.8 x 10⁴

4.   157,000 = 157 x 1000
                    = (1.57 x 100) x 1000
                    = 1.57 x 10² x 10³
                    = 1.57 x 10⁵                                                              

ดังนั้น 157,000 = 1.57 X 10⁵

5. 320,000 = 32 x 10,000
                  = 32 x 10⁵
                  = (3.2 x 10) x 10⁵
                  = 3.2 x 10⁶
ดังนั้น 320,000 = 3.2 x 10⁶

การเขียนจำนวนที่อยู่ในรูปสัญกรณ์วิทยาศาสตร์ให้เป็นจำนวนเต็ม

ตัวอย่างที่ 2  สัญกรณ์วิทยาศาสตร์ในแต่ละข้อต่อไปนี้แทนจำนวนใด

1)   7 x 10 ⁸
2)   33 x 10⁴ 
3)   8.12 x 10⁷

วิธีทำ 

1)   7 x 10⁸ = 7 x 100,000,000
                  = 700,000,000                                                                                          ดังนั้น 7 x 10⁸  =  700,000,000       

2)   33 x 10⁴  = 3.3 x 10000
                     = 33,000                                                                                                 ดังนั้น 33 x 10⁴  =  33,000   
3)   8.12 x 10⁷ = 8.12 x 10,000,000
                      = 81,200,000                                                                                    ดังนั้น  8.12 x 10⁷  = 81,200,000        

ตัวอย่างที่ 3  ไฮโครเจน 1 กรัม มีจำนวนโมเลกุลประมาณ 6 x 10²³ โมเลกุล ไฮโครเจน 18 กรัม มีจำนวนโมเลกุลประมาณกี่โมเลกุล

วิธีทำ  ไฮโครเจน 1 กรัม มีจำนวนโมเลกุลประมาณ 6 x 10²³ โมเลกุล

          ดังนั้น ไฮโครเจน 18 กรัม มีจำนวนโมเลกุลประมาณ

18 x 6 x 10²³ = 108 x 10²³  โมเลกุล

     = 1.08 x 10² x 10²³  โมเลกุล

     = 1.08 x 10²⁵  โมเลกุล

นั่นคือ ไฮโครเจน 18 กรัม มีจำนวนโมเลกุลประมาณ 1.08 x 10²⁵ โมเลกุล

ตัวอย่างที่ 4  ระยะทางจากดวงอาทิตย์ถึงดาวพุธประมาณ 6 x 10⁸  กิโลเมตร แต่ระยะทางจากดวงอาทิตย์ถึงดาวพลูโตประมาณ 5.9 x 10⁹ กิโลเมตร จงหาว่าดวงอาทิตย์อยู่ห่างจากดาวพลูโตมากกว่าที่อยู่ห่างจากดาวพุธประมาณกี่กิโลเมตร

วิธีทำ  ระยะทางจากดวงอาทิตย์ถึงดาวพุธประมาณ  6 x 10⁸  กิโลเมตร

 ระยะทางจากดวงอาทิตย์ถึงดาวพลูโตประมาณ  5.9 x 10⁹  กิโลเมตร

 ดังนั้น ดวงอาทิตย์อยู่ห่างจากดาวพลูโตมากกว่าอยู่ห่างจากคาวพุธประมาณ

(5.9 x 10⁹) – (6 x 10⁸) = (5.9 x 10 x 10⁸) – (6 x 10⁸)  กิโลเมตร

= (59 – 6) x 10⁸   กิโลเมตร 

= 53 x 10⁸   กิโลเมตร

= 5.3 x 10 x 10⁸  กิโลเมตร

= 5.3 x 10⁹  กิโลเมตร

นั่นคือ ดวงอาทิตย์อยู่ห่างจากดาวพลูโตมากกว่าที่อยู่ห่างจากคาวพุธประมาณ 5.3 x 10⁹ กิโลเมตร

การเขียนจำนวนที่มีค่าน้อยๆ ให้อยู่ในรูปสัญกรณ์วิทยาศาสตร์

ตัวอย่างที่ 5  จงเขียนจำนวนต่อไปนี้ในรูปสัญกรณ์วิทยาศาสตร์

1.  0.05
2.  0.00009

วิธีทำ

1.   0.05  =   ⁵⁄₁₀₀

       =  ⁵⁄₁₀²

       =  5 x ¹⁄₁₀²

      =  5 x 10⁻²

ดังนั้น  0.05 = 5 x 10⁻²

2.   0.00009  =  ⁹⁄₁₀₀₀₀₀

              =  ⁹⁄₁₀⁵

              =  9 x ¹⁄₁₀⁵

             =  9 x 10⁻⁵

ดังนั้น  0.00009 = 9 x 10⁻⁵

การเขียนจำนวนที่อยู่ในรูปสัญกรณ์วิทยาศาสตร์ให้เป็นทศนิยม

ตัวอย่างที่ 6  สัญกรณ์วิทยาศาสตร์ในแต่ละข้อต่อไปนี้แทนจำนวนใด

1)   6 x 10⁻⁴

2)    8.23 x 10⁻³

3)   7.504 x 10⁻⁶

4)   5.601 x 10⁻⁷

วิธีทำ

1)   6 x 10⁻⁴  =  6 x ¹⁄₁₀⁴

   =  ⁶⁄₁₀₀₀₀

   =  0.0006

ดังนั้น  6 x 10⁻⁴ = 0.0006

2)    8.23 x 10⁻³ =  8.23 x ¹⁄₁₀³

          =   ⁸·²³⁄₁₀₀₀

          = 0.00823

ดังนั้น  8.23 x 10⁻³ = 0.00823

3)   7.504 x 10⁻⁶  =  7.504 x ¹⁄₁₀⁶

           =   ⁷·⁵⁰⁴⁄₁₀₀₀₀₀₀

           =  0.000007504

ดังนั้น  7.504 x 10⁻⁶  =  0.000007504

4)   5.601 x 10⁻⁷  =  5.601 x ¹⁄₁₀⁷

  = ·⁶⁰¹⁄₁₀₀₀₀₀₀₀

  = 0.0000005601

ดังนั้น  5.601 x 10⁻⁷  =  0.0000005601

ตัวอย่างที่ 7   ถ้ามดตัวหนึ่งหนัก 0.0000000012 กรัม อยากทราบว่าถ้ามดมีน้ำหนักเท่ากันทุกตัว จำนวน 5 ตัว จะมีน้ำหนักเท่ากับกี่กรัม

วิธีทำ  มดตัวหนึ่งหนัก  0.0000000012  กรัม = 1.2 x 10⁻⁹   กรัม

  มด 5 ตัว มีน้ำหนัก  =  5 x (1.2 x 10⁻⁹)   กรัม

   =  (5 x 1.2) x 10⁻⁹    กรัม

   =  6 x 10⁻⁹   กรัม

นั่นคือ มดจำนวน 5 ตัว จะมีน้ำหนักเท่ากับ  6 x 10⁻⁹  กรัม

ตัวอย่างที่ 8  เชื้อไวรัสที่ทำให้เกิดโรคหวัด แต่ละตัวยาวประมาณ 2 x 10⁻⁷ เมตร ถ้าไวรัสชนิดนี้ เรียงต่อกันเป็นสายยาวประมาณ 8 x 10⁻³ เมตร จงหาว่ามีไวรัสอยู่ประมาณกี่ตัว

วิธีทำ  ไวรัสเรียงต่อกันเป็นสายยาวประมาณ  8 x 10⁻³  เมตร

  ไวรัสแต่ละตัวยาวประมาณ  2 x 10⁻⁷  เมตร

  จะมีไวรัสอยู่ต่อกันอยู่ประมาณ  \frac{8 \times 10^{-3}}{2\times 10^{-7}}  = 4 x 10⁽⁻³⁾⁻⁽⁻⁷⁾  ตัว

 = 4 x 10⁽⁻³⁾⁺⁷  ตัว

 = 4 x 10⁴  ตัว

 = 40,000 ตัว

ดังนั้น ไวรัสเรียงต่อกันอยู่ประมาณ 40,000 ตัว

เมื่อน้องๆเรียนรู้เรื่อง การเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์  ซึ่งรูปทั่วไปของสัญกรณ์วิทยาศาสตร์ จะเขียนอยู่ในรูป  A x 10n  เมื่อ 1 ≤ A < 10 และ n เป็นจำนวนเต็มใดๆ  (A มากกว่าหรือเท่ากับ 1 แต่น้อยกว่า 10 และเลขชี้กำลังของ 10 เป็นจำนวนเต็ม) ซึ่งจากตัวอย่างหลายๆตัวอย่าง ทำให้น้องๆ สามารถเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์ ได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์

        คลิปวิดีโอนี้ได้รวบรวม การเขียนจำนวนในรูปสัญกรณ์วิทยาศาสตร์  โดยแสดงวิธีคิดไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ใช้ภาษาพูดอย่างไรให้ถูกต้อง และเหมาะสม

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งในบทเรียนวิชาภาษาไทย วันนี้จะเป็นการเรียนเรื่องระดับภาษา โดยจะมีการแบ่งเนื้อหาออกเป็นภาษาพูด และภาษาเขียน ซึ่งจะมีเนื้อหาเกี่ยวกับระดับของภาษาพูดที่เราควรจะเลือกใช้ให้ถูกต้องตามบุคคล โอกาส และสถานที่ด้วย เป็นอีกหนึ่งบทเรียนในระดับชั้นมัธยมต้นที่น่าสนใจ   ถ้าพร้อมแล้วเรามาเริ่มเรียนไปพร้อม ๆ กันเลย     ภาษาพูด คืออะไร   ภาษา เป็นตัวกลางในการสื่อความหมาย บนโลกนี้นอกจากจะมีหลากหลายภาษาแล้ว ในหนึ่งภาษานั้นก็ยังแบ่งการพูดออกเป็นหลายระดับให้เราได้เลือกใช้แตกต่างกันไป ภาษาพูด

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

การใช้ตัวเชื่อม (Connective words): First,… Second,… Third,… Fourth,… Finally,…

 การใช้ตัวเชื่อม (Connective words) สวัสดีค่ะนักเรียน ม.2 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อม (connective words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay คือเรียงความเพราะฉะนั้นจะยาวกว่า Paragraph ที่เป็นเพียงย่อหน้าหนึ่งเท่านั้นนั่นเองค่ะ 

นิราศภูเขาทอง ศึกษาตัวบทที่น่าสนใจและคุณค่าที่แฝงอยู่ในเรื่อง

  นิราศภูเขาทองเป็นหนึ่งในนิราศที่ได้รับการยกย่องว่าแต่งดีของสุนทรภู่ เป็นงานอันทรงคุณค่าที่ใช้เป็นแบบเรียนภาษาไทยในปัจจุบัน เรามาถอดคำประพันธ์ตัวบทที่น่าสนใจในนิราศภูเขาทองกันดีกว่าค่ะว่ามีบทไหนที่เด่น ๆ ควรศึกษาและจดจำไว้เพื่อไม่ให้พลาดในการทำข้อสอบ ถอดคำประพันธ์ นิราศภูเขาทอง   เนื่องจากนิราศภูเขาทองมีหลายบท ในที่นี้จะเลือกเฉพาะบทที่เด่น ๆ มาศึกษากันนะคะ เราไปดูกันที่บทแรกเลยค่ะ   ถอดคำประพันธ์ บทนี้เป็นการเปรียบเทียบการดื่มเหล้ากับความรัก เหล้าเป็นอบายมุข เมื่อดื่มเข้าไปจะทำให้มีอาการมึนเมา สติสัมปชัญญะไม่ครบถ้วน แต่เมื่อเวลาผ่านไปอาการมึนเมาเหล่านั้นก็จะหายไป แต่หากหลงมัวเมาอยู่กับความรัก ไม่ว่าจะใช้เวลาเท่าไหร่ก็หายไปง่าย ๆ  

ส่วน 10 หรือ ส่วน 1000 แปลงเป็นทศนิยมกันได้หมดถ้าสดชื่น!

จากบทความที่แล้วเราได้ทราบความสัมพันธ์ของเศษส่วนและทศนิยมไปแล้ว เชื่อว่าน้อง ๆหลายคนคงเกิดคำถามในใจว่า แล้วถ้าเจอเศษส่วนที่ตัวส่วนไม่ใช่ 10, 100 หรือ 1000 ต้องทำอย่างไร บทความนี้จะมาไขข้อสงสัยพร้อมกับแสดงวิธีคิดที่ทำให้น้อง ๆต้องพูดเป็นเสียงเดียวกันว่า ง๊ายง่าย!

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1