การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

เรียนออนไลน์ คณิตศาสตร์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

 

เช่น  ให้ A = {1, 2, 3} , B = {6, 7, 8} และ r เป็นความสัมพันธ์จาก A ไป B โดยที่  r = {(x, y) ∈ A × B : 3x < y}

จากที่เรารู้ว่า คู่อับดับที่เป็นสมาชิกของ A × B

นั่นคือ สมาชิกตัวตัวหน้า (x) มาจาก A และสมาชิกตัวหลัง (y) มาจาก B นั่นเอง

พิจารณา x = 1 จะได้ว่า 3(1) = 3 พิจารณาว่า 3 น้อยกว่าตัวไหนใน B บ้าง

จะได้ว่า 3 < 6 , 3 < 7 และ 3 < 8 นั่นคือ x = 1 จะได้ y = 6, 7, 8

ดังนั้น  (1, 6), (1, 7), (1, 8) เป็นความสัมพันธ์ใน r 

พิจารณา x = 2 จะได้ว่า 3(2) = 6 พิจารณาว่า 6 น้อยกว่าตัวไหนใน B บ้าง

จะได้ว่า 6 < 7 และ 6 < 8 นั่นคือ x = 2 จะได้ y = 7, 8

ดังนั้น (2, 7), (2, 8) เป็นความสัมพันธ์ใน r 

พิจารณา x = 3 จะได้ว่า 3(3) = 9

จะเห็นว่าไม่มีสมาชิกตัวใดใน B ที่ มากกว่า 9 เลย

ดังนั้นสรุปได้เลยว่า r = {(1, 6), (1, 7), (1, 8), (2, 7), (2, 8)}

 

ตัวอย่างการตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

 

ให้ A = {0, 1, 2} , B = {1, 2, 3, 4} และ  r เป็นความสัมพันธ์จาก A ไป B

1.) r = {(x, y) ∈ A × B : x > 1 และ y = 2}

จงเขียนความสัมพันธ์ r ในรูปแจกแจงสมาชิก

วิธีทำ 

จาก (x, y) เป็นสมาชิกของ A × B ดังนั้น x ต้องเป็นสมาชิกใน A และ y เป้นสมาชิก ใน B

จาก x > 1 ได้ว่า x = 2 (พิจารณาจากสมาชิกในเซต A)

และ y = 2

ดังนั้น r = {(2, 2)}

 

2.) r = {(x, y) ∈ A × B : 2x = y}

วิธีทำ

พิจารณา x = 0 จะได้ว่า 2(0) = 0 ได้ว่า y = 0 ซึ่ง 0 ไม่เป็นสมาชิกใน B ดังนั้น ตัด x = 0 ทิ้งได้เลย เพราะ (0, 0) ∉ A × B

พิจารณา x = 1 จะได้ว่า  2(1) = 2 ได้ว่า y = 2 จะเห็นว่า ที่ x = 1 ได้ y = 2 และ y = 2 เป็นสมาชิกใน B ดังนั้นจะได้คู่อันดับ (1, 2)

พิจารณา x = 2 จะได้ว่า 2(2) = 4 ได้ว่า  y = 4 ซึ่ง 4 เป็นสมาชิกใน B ดังนั้นจะได้คู่อันดับ (2, 4)

ดังนั้น r = {(1, 2), (2, 4)} ซึ่งเมื่อสังเกตดูน้องๆจะเห็นว่าคู่อันดับที่ได้นั้นเป็นสมาชิกใน A × B

 

3.) r = {(x, y) ∈ A × B : y = x²}

วิธีทำ

พิจารณา x = 0 จะได้ว่า  0² = 0 นั่นคือ y = 0  ซึ่ง y = 0 ไม่เป็นสมาชิกใน B ดังนั้น ตัด x = 0 ทิ้งได้เลย เพราะ (0, 0) ∉ A × B

พิจารณา x = 1 จะได้ว่า 1² = 1 นั่นคือ y = 1 ซึ่ง y = 1 เป็นสมาชิกใน B ดังนั้น ได้คู่อันดับ (1, 1)

พิจารณา x = 2 จะได้ว่า 2² = 4 นั่นคือ y = 4 ซึ่ง เป็นสมาชิกใน B ดังนั้นจะได้ (2, 4)

ดังนั้น r = {(1, 1), (2, 4)} ซึ่ง  (1, 1), (2, 4) ∈ A × B

 

วิดีโอ การตรวจสอบคู่อันดับที่เป็นความสัมธ์

 

  

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

วิธีใช้คำราชาศัพท์ ใช้อย่างไรให้เหมาะสม

ราชาศัพท์ เป็นถ้อยคำที่ใช้พูดกับพระมหากษัตริย์และพระบรมวงศานุวงศ์ ข้าราชการชั้นผู้ใหญ่ พระภิกษุสงฆ์ รวมถึงคำสุภาพที่ใช้กับคนทั่วไป การใช้คำราชาศัพท์ เป็นเรื่องที่มีปัญหาอยู่มาก เพราะการใช้ที่ไม่ถูกต้อง บทเรียนที่เราจะได้เรียนรู้กันในวันนี้น้อง ๆ จะได้เรียนรู้เกี่ยวกับ วิธีใช้คำราชาศัพท์ สำหรับพระมหากษัตริย์และพระบรมวงศานุวงศ์ ทั้งคำนาม และคำสรรพนาม ว่าเราควรแทนตัวเองหรือพระองค์อย่างไรให้ถูกต้อง ถ้าอยากรู้แล้ว ไปดูพร้อมกันเลยค่ะ   ลักษณะการใช้คำราชาศัพท์   คำราชาศัพท์มีไว้ใช้สำหรับคนธรรมดาทั่วไปพูดกับผู้ที่มีศักดิ์สูงกว่าอย่าง กษัตริย์ พระราชินี และพระบรมวงศานุวงศ์

ประโยคปฏิเสธรูปแบบอดีต

สวัสดีค่ะนักเรียน ม.2 ที่น่ารักทุกคน วันนี้ครูจะพาไปทบทวนเรื่อง ประโยคปฏิเสธรูปแบบอดีต ซึ่งเมื่อเล่าถึงเวลาในอดีตส่วนใหญ่แล้วเรามักเจอคำว่า yesterday (เมื่อวานนี้), 1998 (ปี ค.ศ. ที่ผ่านมานานแล้ว), last month (เดือนที่แล้ว)  และกลุ่มคำอื่นๆ ที่กำกับเวลาในอดีต ซึ่งเราจะเจอ Past Time Expressions ในกลุ่ม Past Tenses หรือ อดีตกาล

ความรู้เบื้องต้นเกี่ยวกับเซต

เซตคืออะไร? เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ ทำไมต้องเรียนเซต เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น ความรู้เบื้องต้นเกี่ยวกับเซต เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ

การอ่านบทร้อยกรอง

การอ่านบทร้อยกรอง กาพย์และโคลงอ่านอย่างไรให้ไพเราะ

น้อง ๆ คงจะรู้การคำประพันธ์อย่างกาพย์และโคลงกันอยู่แล้วใช่ไหมคะ เพราะวรรณคดีไทยหลาย ๆ เรื่องที่เราเรียนกันมา ก็ใช้กาพย์และโคลงแต่งกันเสียส่วนใหญ่ และหลังจากที่ได้เรียนลักษณะการแต่งกาพย์กับโคลงสี่สุภาพ ให้ไพเราะกันไปแล้ว จะแต่งอย่างเดียวโดยไม่อ่านให้ถูกต้องก็ไม่ได้ใช่ไหมล่ะคะ ดังนั้นบทเรียนวันนี้จะพาร้อง ๆ ไปเรียนรู้เรื่อง การอ่านบทร้อยกรอง กันบ้าง ว่ามีวิธีอ่านอย่างไรให้ถูกต้องและไพเราะ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การอ่านบทร้อยกรอง     การอ่านบทร้องกรอง ประเภทกาพย์

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof  จากรูป

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1