กราฟของความสัมพันธ์เชิงเส้น

กราฟของความสัมพันธ์เชิงเส้น ปก

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะเป็นการสอนวิธีการเขียน กราฟของความสัมพันธ์เชิงเส้น ซึ่งทำได้โดยการหาความสัมพันธ์ของจำนวนสองจำนวน เขียนให้อยู่ในรูปคู่อันดับ และเขียนกราฟแสดงความสัมพันธ์ข้างต้น ซึ่งน้องๆสามารถศึกษาการเขียนกราฟของความสัมพันธ์เชิงเส้นเพิ่มเติมได้ที่  ⇒⇒ กราฟของความสัมพันธ์เชิงเส้น ⇐⇐

คู่อันดับ

กราฟของความสัมพันธ์เชิงเส้น เขียนแสดงความเกี่ยวข้องของปริมาณสองปริมาณที่กำหนดให้ โดยความสัมพันธ์ระหว่างปริมาณสองปริมาณที่พบในชีวิตประจำวัน เช่น ปริมาณของน้ำประปาที่ใช้กับค่าน้ำ ปริมาณเวลาในการใช้โทรศัพท์กับค่าโทรศัพท์ ระยะทางที่โดยสารรถประจำทางปรับอากาศกับค่าโดยสาร ปริมาณของกระแสไฟฟ้ากับค่าไฟฟ้า เป็นต้น เราสามารถเขียนแสดงความสัมพันธ์เหล่านี้ในรูปตาราง แผนภาพ คู่อันดับ รวมทั้งแสดงในรูปของกราฟได้ ซึ่งในหัวข้อนี้ เราจะทำความรู้จักกับคู่อันดับกันก่อนนะคะ

คู่อันดับ  เขียนแทนด้วยสัญลักษณ์ (a, b)  อ่านว่า  คู่อันดับเอบี

เรียก    a    ว่าสมาชิกตัวที่หนึ่งหรือสมาชิกตัวหน้า  ซึ่งเป็นสมาชิกกลุ่มที่ 1

เรียก    b    ว่าสมาชิกตัวที่สองหรือสมาชิกตัวหลัง  ซึ่งเป็นสมาชิกของกลุ่มที่ 2

ตัวอย่างที่ 1   พิจารณาตารางต่อไปนี้

จำนวนน้ำตาล (ถุง) 1 2 3 4 5
ราคา (บาท) 15 30 45 60 75

เขียนคู่อันดับ  แสดงการอ่าน  และบอกความหมาย

(1, 15)   อ่านว่า   คู่อันดับหนึ่ง สิบห้า                    หมายความว่า   น้ำตาล 1 ถุง   ราคา 15 บาท

(2, 30)   อ่านว่า   คู่อันดับสอง สามสิบ                  หมายความว่า   น้ำตาล 2 ถุง   ราคา 30 บาท

(3, 45)   อ่านว่า   คู่อันดับสาม สี่สิบห้า                 หมายความว่า   น้ำตาล 3 ถุง   ราคา 45 บาท

(4, 60)   อ่านว่า   คู่อันดับสี่ หกสิบ                       หมายความว่า   น้ำตาล 4 ถุง   ราคา 60 บาท

(5, 75)   อ่านว่า   คู่อันดับห้า เจ็ดสิบห้า                หมายความว่า   น้ำตาล 5 ถุง   ราคา 75 บาท

สมบัติของคู่อันดับ

  1. (a, b) ≠  (b, a)   ยกเว้น  a = b
  2. (a, b) =  (c, d)   ก็ต่อเมื่อ  a = c  และ  b = d

กราฟของคู่อันดับ

กราฟของคู่อันดับ  เป็นกราฟที่แสดงความสัมพันธ์ระหว่างสมาชิก 2 กลุ่ม

เขียนเส้นจำนวนในแนวนอนและแนวตั้ง  ให้ตัดกันเป็นมุมฉากที่จุดซึ่งแทนศูนย์ (0)  ดังต่อไปนี้

กราฟของความสัมพันธ์เชิงเส้น

จุดที่เส้นจำนวนทั้งสองตัดกันเรียกว่า  จุดกำเนิด  นิยมแทนด้วย 0

เส้นจำนวนในแนวนอนเรียกว่า  แกนนอน หรือ แกน X และเส้นจำนวนในแนวตั้งเรียกว่า แกนตั้ง หรือ แกน Y  

แกน X และ แกน Y  อยู่บนระนาบเดียวกัน  และแบ่งระนาบออกเป็น 4 ส่วน  เรียกแต่ละส่วนว่า จตุภาค

จตุภาคที่ 1     ระยะตามแกน X และ แกน Y เป็นจำนวนบวกทั้งคู่

จตุภาคที่ 2     ระยะตามแกน X เป็นจำนวนลบ  และระยะตามแกน Y เป็นจำนวนบวก

จตุภาคที่ 3     ระยะตามแกน X และ แกน Y เป็นจำนวนลบทั้งคู่

จตุภาคที่ 4     ระยะตามแกน X เป็นจำนวนบวก  และระยะตามแกน Y เป็นจำนวนลบ

ตัวอย่างที่ 2  จงลงจุดต่อไปนี้ บนระนาบ  X, Y

1.  A(-2, 1), B(3, -5), C(-2, 4), D(0,3), E(5, -1) และ F(-3, -3)  

กราฟของคู่อันดับ 2

2.  P(0, 0), Q(0, -5), R(-3, 0), S(0,2), T(-4, 5) และ  V(3, -4)

กราฟของคู่อันดับ 3

ความสัมพันธ์เชิงเส้น

           ความสัมพันธ์เชิงเส้น แสดงความสัมพันธ์ของปริมาณ 2 ปริมาณ ที่มีกราฟอยู่ในแนวเส้นตรงเดียวกัน เรียกความสัมพันธ์ลักษณะเช่นนี้ว่า “ความสัมพันธ์เชิงเส้น”

  • ความสัมพันธ์เชิงเส้นเป็นความสัมพันธ์ของปริมาณสองปริมาณ ที่มีกราฟอยู่ในแนวเส้นตรงเดียวกัน
  • ความสัมพันธ์เชิงเส้นระหว่างปริมาณสองปริมาณ อาจมีกราฟอยู่ในแนวเส้นตรงเดียวกันเป็นช่วงๆ ไม่จำเป็นต้องเป็นแนวเส้นตรงเดียวกันทั้งหมดก็ได้

ตัวอย่างที่ 3  จงเขียนคู่อันดับและกราฟของคู่อันดับของความสัมพันธ์ของจำนวนนมถั่วเหลืองกับราคาขาย

จำนวนนมถั่วเหลือง (กล่อง) 1 2 3 4 5
ราคาขาย (บาท) 6 12 18 24 30

วิธีทำ  จากข้อมูลในตารางสามารถจับคู่ระหว่างจำนวนนมถั่วเหลืองกับราคาขายได้ 5 คู่  คือ  1 กับ 6, 2 กับ 12, 3 กับ 18, 4 กับ 24, 5 กับ 30

เขียนแสดงการจับคู่โดยใช้สัญลักษณ์ ได้ดังนี้  (1, 6),  (2, 12),  (3, 18),  (4, 24)  และ  (5, 30)

ถ้านำความสัมพันธ์ของจำนวนนมถั่วเหลืองกับราคาขายมาเขียนให้อยู่ในรูป (1, 6), (2, 12), (3, 18), (4, 24),  (5, 30)  เราเรียกสัญลักษณ์นี้ว่า “คู่อันดับ”  และเรียกจำนวนนมถั่วเหลืองกับราคาขายในแต่ละคู่อันดับว่า “สมาชิกของคู่อันดับ”  โดยสมาชิกตัวหน้าแทนจำนวนนมถั่วเหลืองและสมาชิกตัวหลังแทนราคาขาย  เช่น

  • (1, 6)   อ่านว่า   คู่อันดับหนึ่งหก มี 1 เป็นสมาชิกตัวหน้า และ 6 เป็นสมาชิกตัวหลัง หมายความว่า            นมถั่วเหลือง 1 กล่อง ราคา 6 บาท
  • (2, 12)   อ่านว่า   คู่อันดับสอง สิบสอง มี 2 เป็นสมาชิกตัวหน้า และ 12 เป็นสมาชิกตัวหลัง หมายความว่า  นมถั่วเหลือง 2 กล่อง ราคา 12 บาท
  • (3, 18)   อ่านว่า  คู่อันดับสามสิบแปด มี 3 เป็นสมาชิกตัวหน้า และ 18 เป็นสมาชิกตัวหลัง หมายความว่า   นมถั่วเหลือง 3 กล่อง ราคา 18 บาท
  • (4, 24)   อ่านว่า   คู่อันดับสี่ ยี่สิบสี่ มี 4 เป็นสมาชิกตัวหน้า และ 24 เป็นสมาชิกตัวหลัง  หมายความว่า   นมถั่วเหลือง 4 กล่อง ราคา 24 บาท
  • (5, 30)   อ่านว่า  คู่อันดับห้า สามสิบ มี 5 เป็นสมาชิกตัวหน้า และ 30 เป็นสมาชิกตัวหลัง หมายความว่า   นมถั่วเหลือง 5 กล่อง ราคา 30 บาท

คำถามเพิ่มเติม : คู่อันดับ (1, 6) กับ (6, 1) เหมือนกันหรือไม่ เพราะอะไร

อธิบายเพิ่มเติม : ถ้าเขียนความสัมพันธ์ของจำนวนนมถั่วเหลืองกับราคาขายเป็น (6, 1) จะได้ว่า  นมถั่วเหลือง 6 กล่อง ราคา 1 บาท พบว่า   ความหมายของคู่อันดับดังกล่าวจะเปลี่ยนไปจากเดิม  ดังนั้นลำดับของสมาชิกแต่ละตัวในคู่อันดับมีความสำคัญในเงื่อนไขหรือข้อตกลงนั้น

เขียนกราฟของคู่อันดับ ได้ดังนี้

กราฟของคู่อันดับ

ตัวอย่างที่ 4  จงเขียนกราฟแสดงความสัมพันธ์ระหว่างจำนวนมะละกอ  และราคาขายจากตารางที่กำหนดให้

จำนวนมะละกอ  (ผล) 1 2 3 4 5 6 7
ราคาขาย  (บาท) 10 20 30 40 50 60 70

วิธีทำ  จากตารางเขียนคู่อันดับแสดงความสัมพันธ์ระหว่างจำนวนมะละกอกับราคาขาย  ได้ดังนี้

(1,10),  (2,20),  (3,30), (4,40), (5,50), (6,60) และ (7,70)   

เมื่อกำหนดให้แกน  X  แสดงจำนวนมะละกอ  และแกน Y  แสดงราคาขาย  จะได้กราฟแสดงความสัมพันธ์ระหว่างมะละกอกับราคาขาย  ได้ดังนี้

กราฟของคู่อันดับ 4

 

หมายเหตุ : เนื่องจากจำนวนมะละกอเป็นจำนวนบวกกราฟแสดงความสัมพันธ์จึงอยู่ในจตุภาคที่  1  เท่านั้น 

ตัวอย่างที่ 5  กำหนดกราฟแสดงจำนวนมังคุดที่ชาวสวนเก็บส่งขายได้ตั้งแต่วันที่ 1  ถึงวันที่  10  ของเดือนพฤษภาคม

กราฟของคู่อันดับ 5

 

จงตอบคำถามต่อไปนี้

  1. วันที่ 1  เก็บมังคุดส่งขายได้เท่าไร

        ตอบ  100  ผล

  1. วันที่เท่าไรเก็บมังคุดส่งขายได้มากที่สุด เก็บได้เท่าไร

        ตอบ  วันที่  6  เก็บมังคุดได้  900  ผล

  1. วันที่เท่าไรบ้างที่เก็บมังคุดได้เป็นจำนวนเท่ากัน และเก็บได้เท่าไรบ้าง

        ตอบ  วันที่  3  กับ  9  เก็บได้  400  ผล  และวันที่  5  กับวันที่  8 เก็บได้  700  ผล

  1. วันที่เท่าไรที่จำนวนมังคุดที่เก็บส่งขายเริ่มมีจำนวนลดลง

        ตอบ  วันที่  7

  1. จำนวนมังคุดที่เก็บส่งขายในรอบ 10  วันมีการเปลี่ยนแแปลงอย่างไร

       ตอบ  จำนวนมังคุดที่เก็บส่งขายได้ใน  6  วันแรก  เพิ่มขึ้นโดยตลอด  และมีจำนวนมากที่สุดถึง  900  ผล  ในวันที่  6  หลังจากนั้นมีจำนวนลดลงเรื่อย  ๆ  จนถึงวันที่  10

วิดีโอ กราฟของความสัมพันธ์เชิงเส้น

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ภาษาชวา มลายู ในภาษาไทย มีลักษณะอย่างไร?

น้อง ๆ สงสัยกันไหมคะว่าในภาษาที่เราใช้พูดและใช้เขียนกันอยู่นี้ มีคำไหนบ้างที่ถูกหยิบยืมมาจากต่างประเทศ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักและศึกษาลงลึกถึงภาษาชวาและมลายู เป็นอีกหนึ่งภาษาที่เข้ามามีอิทธิพลกับภาษาไทยมาตั้งแต่สมัยอดีต ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้ด้วยกันเลยค่ะ   ความเป็นมาของการยืมคำจากภาษาชวา มลายู     ทางตอนใต้ของประเทศไทยติดต่อกับประเทศมาเลเซีย จึงทำให้มีการติดต่อค้าขายสานสัมพันธ์ไมตรีกันมาตั้งแต่สมัยอดีต โดยเดิมทีชาวชวาและชาวมลายูเคยใช้ภาษามลายูร่วมกัน ต่อว่าชาวชวามีภาษาเป็นของชนชาติตัวเอง แต่ก็ยังมีบางคำที่คล้ายคลึงกับภาษามลายูอยู่ 1. คำยืมภาษาชวา เพราะอิทธิพลของวรรณคดีสมัยอยุธยาตอนปลายเรื่องดาหลังและอิเหนา วรรณคดีเรื่องนี้เป็นที่นิยมถูกนำมาปรับปรุงและประพันธ์เป็นบทละคร โดยในเรื่องมีภาษาชวาอยู่เยอะมาก ทำให้เป็นที่รู้จักและถูกหยิบยืมมาใช้ในการประพันธ์เรื่อยมา

โจทย์ปัญหาบวก ลบ ทศนิยม

บทความนี้จะยกตัวอย่างโจทย์ปัญหาการบวกลบทศนิยม เพื่อให้น้องๆได้ทำความเข้าใจและศึกษาการแสดงวิธีคิด หากต้องไปเจอการแก้โจทย์ปัญหาในห้องเรียนจะสามารถนำความรู้จากบทความนี้ไปใช้ให้เกิดประโยชน์อย่างสูงสุด

คติธรรมในสำนวนไทย

คติธรรม หมายถึง ธรรมที่เป็นแบบอย่าง เป็นวัฒนธรรมที่เกี่ยวกับหลักการดำเนินชีวิตซึ่งได้มาจากหลักธรรมทางพระพุทธศาสนาหรืออาจเรียกได้ว่าเป็นวัฒนธรรมทางจิตใจอย่างหนึ่งที่คนไทยให้ความสำคัญอย่างมากและมักจะถูกสอดแทรกอยู่ในสื่อต่าง ๆ เพื่อปลูกฝังเด็กรุ่นใหม่ให้มีคติธรรมประจำใจ ไม่ว่าจะเป็นนิทานหรือสำนวนไทย สำหรับบทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้เรื่อง คติธรรมในสำนวนไทย มาดูกันค่ะว่าจะมีอะไรบ้าง   สำนวนที่เกี่ยวกับคติธรรม   สำนวนไทยถือเป็นภูมิปัญญาในการใช้ภาษาไทยอีกรูปแบบหนึ่ง เป็นถ้อยคำที่มิได้มีความหมายตรงไปตรงมาตามตัวอักษร หรือแปลตามรากศัพท์ แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น ชวนให้ผู้อ่านได้คิด มีรูปแบบการใช้ภาษาที่ต้องผ่านการเรียบเรียงถ้อยคำ การรวมข้อความยาว ๆ ให้สั้น โดยนำถ้อยคำเพียงไม่กี่คำมาเรียงร้อย

NokAcademy_ ม.6 Modlas in the Past

Modals in the Past

  สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modals in the Past “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า   ทบทวน Modal Verbs  Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

โคลงนฤทุมนาการ โคลงสุภาษิตสอนใจรู้ไว้ไม่เป็นทุกข์

หลังจากได้ศึกษาเรื่องโคลงโสฬสไตรยางค์ไปแล้ว น้อง ๆ ทราบไหมคะว่าในโครงสุภาษิตยังมีเรื่องอื่นอีกด้วย และในบทเรียนที่น้อง ๆ จะได้เรียนต่อไปนี้ก็คือเรื่อง โคลงนฤทุมนาการ เป็นโคลงสุภาษิต ที่ใช้โคลงสี่สุภาพในการประพันธ์เหมือนโคลงโสฬสไตรยางค์ แต่จะมีความหมาย และเนื้อหาอย่างไรบ้าง ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   โคลงนฤทุมนาการ คืออะไร     ก่อนที่จะไปเรียนรู้ว่าในโคลงนฤทุมนาการมีอะไรบ้างนั้น เรามาดูกันที่ความหมายก่อนเลยค่ะ คำว่า นฤทุมนาการ มาจากคำศัพท์ต่าง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1