แบบฝึกหัดความสัมพันธ์

supanaree
supanaree

แชร์

Share on twitter
Share on facebook

สารบัญ

แบบฝึกหัดความสัมพันธ์

แบบฝึกหัดความสัมพันธ์ เป็นการทบทวนเนื้อหาเกี่ยวกับความสัมพันธ์ ได้แก่ เรื่องโดเมนและเรนจ์ของความสัม กราฟของความสัมพันธ์ และตัวผกผันของความสัมพันธ์

ก่อนทำแบบฝึกหัดความสัมพันธ์ บทความที่น้องๆควรรู้ คือ

  1. โดเมนของความสัมพันธ์
  2. เรนจ์ของความสัมพันธ์
  3. กราฟของความสัมพันธ์
  4. ตัวผกผันของความสัมพันธ์

 

แบบฝึกหัด

1.) ถ้า (x, 5) = (3, x – y) แล้ว 3x – y มีค่าเท่าใด

วิธีทำ หาค่า x และ y เพื่อนำมาแทนค่าในสมการ 3x – y

เนื่องจาก (x, 5) = (3, x – y) ได้ว่า สมาชิกตัวหน้าของคู่อันดับทั้งสองต้องเม่ากัน และ สมาชิกตัวหลังของคู่อันดับทั้งสองต้องเท่ากัน

นั่นคือ x = 3 และ 5 = x – y

ต้องการหา y 

พิจารณา 5 = x- y  เนื่องจากเรารู้ว่า x = 3

เมื่อแทน x = 3 ในสมการ 5 = x- y จะได้ 5 = 3 – y แก้สมการจะได้ y = 3 – 5 = -2

ดังนั้น x = 3 และ y = -2

ตอนนี้เราได้ค่า x และ y มาแล้ว ดังนั้นสามารถแทน ค่า x, y ในสมการ 3x – y จะได้ดังนี้

3x – y = 3(3) – (-2) = 9 + 2 = 11

 

2.) ให้ B เป็นเซตของจำนวนเต็ม และ A = {x : x เป็นจำนวนเต็มบวกที่น้อยกว่า 5} และ r = {(x, y) ∈ A × B : 2y = x}ให้ยกตัวอย่างสมาชิกคู่อันดับในความสัมพันธ์ r

วิธีทำ จาก B เป็นเซตของจำนวนเต็ม จะได้ว่า B = {…, -3, -2, -1, 0, 1, 2, …}

และจาก A = {x : x เป็นจำนวนเต็มบวกที่น้อยกว่า 5} จะได้ว่า A = {1, 2, 3, 4}

จากโจทย์ r = {(x, y) ∈ A × B : 2y = x}

A × B หมายความว่า คู่อันดับจะมีสมาชิกตัวหน้าที่มาจาก A และสมาชิกตัวหลังมาจาก B

จาก A = {1, 2, 3, 4} แสดงว่า x (สมาชิกตัวหน้า) ที่เป็นไปได้คือ 1, 2, 3, 4

และจาก B เป็นเซตของจำนวนเต็ม แสดงว่า y (สมาชิกตัวหลัง) จะต้องเป็นจำนวนเต็ม

หาคู่อันดับในความสัมพันธ์ r ที่สอดคล้องกับเงื่อนไข 2y = x

แทน x ที่เป็นไปได้ในสมการ 2y = x

ที่ x = 1 ;  2y = 1 >>  y = \frac{1}{2}   จะเห็นว่า y ∉ B ดังนั้น (1, \frac{1}{2}) ไม่เป็นคู่อันดับในความสัมพันธ์ r

x = 2 ; 2y = 2 >> y = 1 ซึ่ง (2, 1) ∈ A × B ดังนั้น (2, 1) เป็นคู่อันดับในความสัมพันธ์ r

x = 3 ; 2y = 3 >> y = \frac{3}{2} จะเห็นว่า (3, \frac{3}{2}) ∉ A × B ดังนั้น (3, \frac{3}{2}) ไม่เป็นคู่อันดับในความสัมพันธ์ r

x = 4 ; 2y = 4 >> y = 2 ซึ่ง (4, 2) ∈ A × B ดังนั้น (4, 2) เป็นคู่อันดับในความสัมพันธ์ r

ดังนั้น r = {(2, 1), (4, 2)}

 

3.) r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : \sqrt{x}+\sqrt{y+1}=2} ให้หาโดเมนและเรนจ์ของความสัมพันธ์ r

วิธีทำ 

แบบฝึกหัดความสัมพันธ์

 

4.) ให้ r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : x + y = 1} จงหา r^{-1}

วิธีทำ 

แบบฝึกหัดความสัมพันธ์

 

วิดีโอแบบฝึกหัดความสัมพันธ์

 

0

ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook
โจทย์ปัญหาแผนภูมิรูปวงกลม

โจทย์ปัญหาแผนภูมิรูปวงกลม

ในบทความนี้เราจะได้เรียนรู้หลักการแก้โจทย์ปัญหาแผนภูมิรูปวงกลมที่จะนำไปใช้ได้ในชีวิตประจำวนและสามารถเข้าใจได้ง่าย

can could

การตั้งคำถามโดยใช้ Can และ Could

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้วิธีการใช้กริยาช่วยคือ Can และ Could กันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

รากที่สาม

รากที่สาม

ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

การเขียนเศษส่วนที่ตัวส่วนหาร 10 หรือ 100 ลงตัว ในรูปทศนิยม

ส่วน 10 หรือ ส่วน 1000 แปลงเป็นทศนิยมกันได้หมดถ้าสดชื่น!

จากบทความที่แล้วเราได้ทราบความสัมพันธ์ของเศษส่วนและทศนิยมไปแล้ว เชื่อว่าน้อง ๆหลายคนคงเกิดคำถามในใจว่า แล้วถ้าเจอเศษส่วนที่ตัวส่วนไม่ใช่ 10, 100 หรือ 1000 ต้องทำอย่างไร บทความนี้จะมาไขข้อสงสัยพร้อมกับแสดงวิธีคิดที่ทำให้น้อง ๆต้องพูดเป็นเสียงเดียวกันว่า ง๊ายง่าย!

สมบัติการคูณจำนวนจริง

สมบัติการคูณจำนวนจริง

จากบทความก่อนหน้านี้น้องๆได้เรียนเรื่องสมบัติการบวกจำนวนจริงไปแล้ว บทความนี้พี่ก็จะพูดถึงสมบัติการคูณจำนวนจริงซึ่งมีเนื้อหาคล้ายๆกันกับการบวก และมีเพิ่มสมบัติการแจกแจงเข้ามา เนื้อหาเหล่านี้ล้วนเป็นพื้นฐานสำคัญที่จะใช้ในการเรียนเนื้อหาบทต่อๆไป เมื่อน้องๆอ่านบทความนี้แล้วน้องๆจะเรียนเนื้อหาบทต่อๆไปได้ง่ายขึ้นแน่นอนค่ะ

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้