เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะมีความเกี่ยวข้องกับกรณฑ์ในบทความ จำนวนจริงในรูปกรณฑ์ จากที่เรารู้ว่า จำนวนตรรกยะคือจำนวนที่สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มได้ เช่น \frac{2}3{} , \frac{5}{4}, \frac{1}{2}, 2 , 3 เป็นต้น ดังนั้นเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ ก็คือจำนวนจริงใดๆยกกำลังด้วยจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็ม เช่น \mathrm{5^{\frac{2}{3}}} , 3^{\frac{5}{4}} เป็นต้น

โดยนิยามของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ คือ

เลขยกกำลัง เมื่อ k และ n เป็นจำนวนเต็ม และ n > 1

เราเรียก

เลขยกกำลัง ว่า เลขยกกำลัง

a คือ เลขฐาน

\frac{k}{n} คือ เลขชี้กำลัง

 

ตัวอย่าง

เลขยกกำลัง = \sqrt[3]{5^{2}}

เลขยกกำลัง = \sqrt[4]{3^{5}} = 3\sqrt[4]{3}

สมบัติของ เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

ให้ a, b เป็นจำนวนจริง และ m, n เป็นจำนวนเต็ม

1.) เลขยกกำลัง

ตัวอย่าง

เลขยกกำลัง

(2^x)(2^y)=2^{x+y}

 

2.) เลขยกกำลัง , a\neq 0

ตัวอย่าง

เลขยกกำลัง

 

3.) เลขยกกำลัง

ตัวอย่าง

(7^3)^2=7^{3\times 2}=7^6

 

4.) เลขยกกำลัง

ตัวอย่าง

เลขยกกำลัง

 

5.)  เลขยกกำลัง

ตัวอย่าง

\frac{3^2}{5^2}=(\frac{3}{5})^2

 

ตัวอย่างการใช้งานสมบัติและนิยาม

 

ตัวอย่างต่อไปนี้จะเป็นการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะให้อยู่ในรูปอย่างง่าย

เลขยกกำลัง

การบวก ลบ คูณ และหาร เลขยกกำลัง

ตัวอย่างนี้เป็นวิธีการบวก ลบ คูณ หาร เลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เราจะหาค่าของ 2^{0}+(0.027)^{\frac{1}{3}}+(8)^{\frac{1}{3}}(25)^{\frac{1}{2}}-(0.0081)^{\frac{1}{4}}

การที่ตัวเลขเหล่านี้จะบวกลบกันได้ง่ายขึ้นอาจจะต้องทำให้เลขชี้กำลังหายหรือทำให้เป็นจำนวนเต็ม

เราลองมาจัดรูปใหม่ โดยการพิจารณาตัวเลขต่อไปนี้

2^{0} = 1

0.027 = 0.3^3

8=2^3

25=5^2

0.0081=0.3^4

ดังนั้นจะได้รูปใหม่ได้เป็น

เลขยกกำลัง

 

 

วิดีโอเพิ่มเติม

 

การทำแบบฝึกหัดในบทความนี้ไม่มีวิธีที่แน่นอนตายตัวบางข้ออาจจะต้องใช้สมบัติหลายอย่าง บางข้ออาจจะต้องใช้นิยามช่วย แบบฝึกหัดเหล่านี้ต้องอาศัยการสังเกตและอาศัยการฝึกทำแบบฝึกหัดบ่อยๆ เพื่อที่น้องๆจะได้เจอแบบฝึกหัดหลายรูปแบบและจะทำให้น้องๆพร้อมสำหรับการสอบในสนามสอบต่างๆอีกด้วย

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

บวก ลบ ทศนิยมอย่างไรให้ตรงหลัก

การบวกและการลบทศนิยมมีหลักการเดียวกันกับการบวกและการลบจำนวนนับคือ ต้องบวกและลบให้ตรงหลัก ดังนั้นหัวใจสำคัญของเรื่องนี้คือต้องเขียนตำแหน่งของตัวเลขให้ตรงหลักไม่ว่าจะเป็นหน้าจุดทศนิยมและหลัดจุดทศนิยม บทความมนี้จะมาบอกหลักการตั้งบวกและตั้งลบให้ถูกวิธี และยกตัวอย่างการบวกการลบทศนิยมที่ทำให้น้อง ๆเห็นภาพและเข้าใจได้อย่างดี

อิศรญาณภาษิต

อิศรญาณภาษิต ศึกษาวรรณคดีคำสอนของไทย

อิศรญาณภาษิต เป็นวรรณคดีที่มีเนื้อหาสอนให้ผู้อ่านรู้จักลักษณะของกลอนเพลงยาวและยังสอดแทรกข้อคิดต่าง ๆ ไว้อีกมากมาย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงประวัติความความเป็นมา ผู้แต่ง ลักษณะคำประพันธ์ของกลอนเพลงยาว และตัวบทที่น่าสนใจ ๆ ในเรื่อง ถ้าน้อง ๆ อยากรู้แล้วว่าวรรณคดีเรื่องนีมีความเป็นมาและความสำคัญอย่างไร เหตุใดจึงอยู่ในแบบเรียนภาษาไทยในเราได้ศึกษากันอยู่ตอนนี้ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ     ความเป็นมาของ   อิศรญาณภาษิต (อ่านว่า

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof  จากรูป

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

verb to be

Verb to be ใน Present Simple Tense

สวัสดีน้องๆ ป. 5 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เรื่อง Simple Simple อย่าง Verb to be ใน Present Simple Tense กันครับ ถ้าพร้อมแล้วไปดูกันเลย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1