เรนจ์ของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย R_r

 

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย R_r คือสมาชิกตัวหลัง

เช่น r_1 = {(2, 2), (3, 5), (8, 10)}

จะได้ว่า R_{r_1} = {2, 5, 10}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)} จากเรนจ์ของความสัมพันธ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r

สรุปได้ว่า R_{r_2} = {2}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

พิจารณากราฟของสมการ y = \frac{1}{x}

เรนจ์ของความสัมพันธ์

จะเห็นว่ากราฟของ y = \frac{1}{x} ไม่ตัดแกน x นั่นคือ y ≠ 0

และจาก เรนจ์ของความสัมพันธ์คือ สมาชิกตัวหลังของคู่อันดับ ซึ่งก็คือ y นั่นเอง 

หรืออาจจะสังเกตจากสมการก็ได้ เนื่องจาก x เป็น 0 ไม่ได้ นั่นก็แปลว่ายังไง y ก็ไม่เป็น 0 แน่นอน

ดังนั้น R_{r_3} = {y : y  เป็นจำนวนจริง และ y ≠ 0}

 

ตัวอย่างการหาเรนจ์ของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น R_r = {2, 4, 6}

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า ค่า y มีค่าตั้งแต่ 0 ทำให้ได้ว่า y เป็นจำนวนจริงที่มากกว่าหรือเท่ากับ 0 

หรือจะสังเกตจากสมการเลยก็ได้ จาก y = x²  จากที่เรารู้อยู่แล้วว่า จำนวนจริงยกกำลังสองยังไงก็ไม่เป็นลบแน่นอน เราเลยรู้ว่า y ยังไงก็ต้องเป็นบวกหรือ 0 

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≥ 0}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า กราฟไม่ตัดแกน x เลย (จุดที่กราฟตัดแกน x คือจุดที่ y = 0) นั่นคือ y เป็นอะไรก็ได้แต่ไม่มีทางเป็น 0 

หรือจะสังเกตจากสมการ y = \frac{1}{x-3} จากที่รู้ว่า x นั้นเป็น 3 ไม่ได้ (เพราะจะทำให้ y หาค่าไม่ได้) แต่เมื่อแทน x เป็นจำนวนจริงอื่น ยังไง y ก็ไม่มีทางเป็น 0 เพราะตัวเศษเป็นค่าคงที่

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≠ 0}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า y ไม่เป็นลบเลย นั่นคือ y มากกว่าหรือเท่ากับ 0

หรือจะสังเกตจากสมการก็ได้ จากสมการ y = \sqrt{x} จากที่เรารู้ว่าโดเมนหรือ x เป็นลบ ไม่ได้ นั่นคือ x มากกว่าหรือเท่ากับ 0 ทำให้ได้ว่า y ไม่มีทางเป็นลบเหมือนกัน

ดังนั้น R_r = {y : y ∈ R และ y ≥ 0}

 

วิดีโอ เรนจ์ของความสัมพันธ์

 

เนื้อหาที่ควรรู้และเกี่ยวข้องกับเรนจ์ของความสัมพันธ์

  1. กราฟของความสัมพันธ์
  2. โดเมนของความสัมพันธ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โจทย์ปัญหาแผนภูมิรูปวงกลม

ในบทความนี้เราจะได้เรียนรู้หลักการแก้โจทย์ปัญหาแผนภูมิรูปวงกลมที่จะนำไปใช้ได้ในชีวิตประจำวนและสามารถเข้าใจได้ง่าย

จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

จำนวนจริงในรูปกรณฑ์ จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ เช่น 2 เป็นรากที่

การเขียนประกาศ เขียนเชิงกิจธุระได้อย่างไรบ้าง?

การเขียนเชิงกิจธุระหมายถึงหน้าที่ที่พึงกระทำ การเขียนเชิงกิจธุระมีมากมายหลายแบบ บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ การเขียนประกาศ ซึ่งเป็นการเขียนเชิงกิจธุระรูปแบบหนึ่ง เราไปดูพร้อมกันเลยค่ะว่าการเขียนประเภทนี้จะมีวิธีการอย่างไรบ้าง   การเขียนเชิงกิจธุระ   การเขียนประกาศ   ประกาศ เป็นการสื่อสารที่ใช้เผยแพร่โดยกว้าง ให้บุคคลทุกระดับในหน่วยงานหรือบุคคลภายนอกได้อ่านและมีความเข้าใจที่ตรงกัน โดยอาศัยสื่อสาธารณะชนิดใดชนิดหนึ่งเป็นการแจ้งให้ทราบและปฏิบัติตาม อย่างเช่น หนังสือพิมพ์ วิทยุ โทรทัศน์ ป้ายประกาศต่าง ๆ การใช้ภาษาในการประกาศนั้นจะไม่ใช้ข้อความยาว ๆ

สามก๊ก ความเป็นมาของวรรณกรรมจีนเพชรน้ำเอกของโลก

สามก๊ก เป็นวรรณกรรมจีนที่มีมีชื่อเสียงไปทั่วโลก ไม่เว้นแม้แต่ประเทศไทย โดยฉบับแปลที่เราคุ้นเคยกันเป็นอย่างดีคือฉบับที่แปลโดยเจ้าพระยาคลัง (หน) และด้วยเนื้อหาที่เต็มไปด้วยเล่ห์กลเพทุบาย กลศึกในการรบ การชิงรักหักเหลี่ยม ความเคียดแค้นชิงชัง ทำให้เนื้อเรื่องมีความยาวสมกับเป็นกับเป็นวรรณกรรมอิงประวัติศาสตร์ แต่บทเรียนที่น้อง ๆ จะเรียนคือตอน กวนอูไปรับราชการกับโจโฉ จะมีเนื้อหาและความเป็นมาอย่างไรเราไปเรียนรู้พร้อมกันค่ะ   ความเป็นมาของ สามก๊ก   สามก๊ก เป็นวรรณกรรมจีนอิงประวัติศาสตร์ ที่เรื่องราวและเหตุการณ์ต่าง ๆ เกิดขึ้นจริงในประวัติศาสตร์ของจีน (ค.ศ.

จดหมายถึงญาติผู้ใหญ่

จดหมายถึงญาติผู้ใหญ่ เขียนอย่างไรให้ถูกกาลเทศะ

​จดหมายเป็นการสื่อสารที่มีรูปแบบเฉพาะ โดยผู้เขียนจะต้องเลือกใช้ถ้อยคำให้ถูกต้อง เหมาะสมแก่ผู้รับ การเขียนจดหมายนั้นมีหลายแบบ แต่บทเรียนที่น้อง ๆ จะได้เรียนรู้กันในวันนี้คือ จดหมายถึงญาติผู้ใหญ่ เราจะมีวิธีเขียนจดหมายอย่างให้ถูกต้องและถูกกาลเทศะมากที่สุด เราไปเรียนรู้พร้อมกันเลยค่ะ   การเขียนจดหมายถึงญาติผู้ใหญ่   การเขียนจดหมาย   1. ผู้ส่งจดหมาย 2. จดหมาย 3. ผู้รับจดหมาย   ตัวอย่างการเขียนจดหมาย   ​

ขุนช้างขุนแผน ตอน กำเนิดพลายงาม ถอดคำประพันธ์และเรียนรู้คุณค่าของวรรณคดี

จากที่บทเรียนคราวก่อนเราได้รู้ความเป็นมาและเรื่องย่อของตอนที่สำคัญอีกตอนหนึ่งของเรื่องอย่างตอน กำเนิดพลายงาม กันไปแล้ว บทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกตัวบทที่น่าสนใจเพื่อถอดคำประพันธ์พร้อมทั้งศึกษาคุณค่าในเรื่อง น้อง ๆ จะได้รู้พร้อมกันว่าเหตุใดวรรณคดีเรื่อง ขุนช้างขุนแผน ถึงมีชื่อเสียงเป็นที่รู้จักแพร่หลายมาตั้งแต่อดีตจนถึงปัจจุบัน ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   ตัวบท ขุนช้างขุนแผน ตอน กำเนิดพลายงาม     ถอดคำประพันธ์ : เป็นคำสอนของนางวันทองที่ได้สอนพลายงามก่อนที่จะต้องจำใจส่งลูกไปอยู่กับย่าที่กาญจนบุรีว่าเกิดเป็นผู้ชายต้องลายมือสวย โตขึ้นจะได้รับราชการก่อนจะพาพลายงามมาส่งด้วยความรู้สึกที่เหมือนใจสลาย    

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1