เรนจ์ของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย R_r

 

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย R_r คือสมาชิกตัวหลัง

เช่น r_1 = {(2, 2), (3, 5), (8, 10)}

จะได้ว่า R_{r_1} = {2, 5, 10}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)} จากเรนจ์ของความสัมพันธ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r

สรุปได้ว่า R_{r_2} = {2}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

พิจารณากราฟของสมการ y = \frac{1}{x}

เรนจ์ของความสัมพันธ์

จะเห็นว่ากราฟของ y = \frac{1}{x} ไม่ตัดแกน x นั่นคือ y ≠ 0

และจาก เรนจ์ของความสัมพันธ์คือ สมาชิกตัวหลังของคู่อันดับ ซึ่งก็คือ y นั่นเอง 

หรืออาจจะสังเกตจากสมการก็ได้ เนื่องจาก x เป็น 0 ไม่ได้ นั่นก็แปลว่ายังไง y ก็ไม่เป็น 0 แน่นอน

ดังนั้น R_{r_3} = {y : y  เป็นจำนวนจริง และ y ≠ 0}

 

ตัวอย่างการหาเรนจ์ของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น R_r = {2, 4, 6}

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า ค่า y มีค่าตั้งแต่ 0 ทำให้ได้ว่า y เป็นจำนวนจริงที่มากกว่าหรือเท่ากับ 0 

หรือจะสังเกตจากสมการเลยก็ได้ จาก y = x²  จากที่เรารู้อยู่แล้วว่า จำนวนจริงยกกำลังสองยังไงก็ไม่เป็นลบแน่นอน เราเลยรู้ว่า y ยังไงก็ต้องเป็นบวกหรือ 0 

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≥ 0}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า กราฟไม่ตัดแกน x เลย (จุดที่กราฟตัดแกน x คือจุดที่ y = 0) นั่นคือ y เป็นอะไรก็ได้แต่ไม่มีทางเป็น 0 

หรือจะสังเกตจากสมการ y = \frac{1}{x-3} จากที่รู้ว่า x นั้นเป็น 3 ไม่ได้ (เพราะจะทำให้ y หาค่าไม่ได้) แต่เมื่อแทน x เป็นจำนวนจริงอื่น ยังไง y ก็ไม่มีทางเป็น 0 เพราะตัวเศษเป็นค่าคงที่

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≠ 0}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า y ไม่เป็นลบเลย นั่นคือ y มากกว่าหรือเท่ากับ 0

หรือจะสังเกตจากสมการก็ได้ จากสมการ y = \sqrt{x} จากที่เรารู้ว่าโดเมนหรือ x เป็นลบ ไม่ได้ นั่นคือ x มากกว่าหรือเท่ากับ 0 ทำให้ได้ว่า y ไม่มีทางเป็นลบเหมือนกัน

ดังนั้น R_r = {y : y ∈ R และ y ≥ 0}

 

วิดีโอ เรนจ์ของความสัมพันธ์

https://youtu.be/dHYXyKemluc

 

เนื้อหาที่ควรรู้และเกี่ยวข้องกับเรนจ์ของความสัมพันธ์

  1. กราฟของความสัมพันธ์
  2. โดเมนของความสัมพันธ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ   ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

วิชชุมมาลาฉันท์

เรียนรู้การแต่ง วิชชุมมาลาฉันท์ 8 ฉันท์ที่เปล่งสำเนียงยาวดุจสายฟ้า

ฉันท์ คือ ลักษณะถ้อยคำที่กวีได้ประพันธ์ขึ้นเพื่อให้เกิดความไพเราะ โดยกำหนดครุ ลหุ และสัมผัสไว้เป็นมาตรฐาน มีด้วยกันมากมายหลายชนิด จากที่บทเรียนครั้งก่อนเราได้เรียนรู้เกี่ยวกับที่มาและพื้นฐานการแต่งฉันท์ไปแล้ว บทเรียนในวันนี้เราจะมาเจาะลึกให้ลึกขึ้นไปอีกด้วยการฝึกแต่ง วิชชุมมาลาฉันท์ 8 กันค่ะ ฉันท์ประเภทนี้จะเป็นอย่างไร ทำไมถึงเป็น 8  ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำประพันธ์ประเภท ฉันท์   ฉันท์ในภาษาไทยได้แบบแผนมาจากอินเดีย ในสมัยพระเวท แต่ลักษณะฉันท์ในสมัยพระเวทไม่เคร่งครัดเรื่องครุ ลหุ นอกจากจะบังคับเรื่องจำนวนคำในแต่ละบท

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ จัดรูปใหม่ ได้เป็น (อ่านว่าล็อก x ฐาน

M1 This, That, These, Those

การใช้ This, That, These, Those

สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคนวันนี้เราจะไปเรียนเรื่อง การใช้ This, That, These, Those ในภาษาอังกฤษ กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจ้า   บทนำ ก่อนที่นักเรียนจะไปเรียนเรื่อง การใช้  This, That, These, Those ครูอยากจะให้ลองดูตัวอย่างของการใช้ This, That, These, Those (Determiners) และ

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง การแก้สมการกำลังสอง สามารถทำได้โดยการ แยกตัวประกอบพหุนามกำลังสอง และใช้สูตร เราแก้สมการเพื่อหาคำตอบหรือหาค่าของตัวแปร ในบทความนี้พี่จะพูดถึงสมการกำลังสองตัวแปรเดียว ซึ่งอยู่ในรูป ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0 ตัวอย่างสมการกำลังสองตัวแปรเดียว 

กาพย์พระไชยสุริยา เรียนรู้ความเป็นมาของแบบเรียนภาษาไทยอันทรงคุณค่า

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นอีกหนึ่งบทเรียนที่น้อง ๆ ทุกคนจะได้ศึกษากัน แต่รู้ไหมคะว่าคำกาพย์ที่แต่งโดยสุนทรภู่นี้เป็นกาพย์แบบไหน มีประวัติความเป็นมาอย่างไร เหตุใดถึงมาอยู่ในแบบเรียนวิชาภาษาไทยได้ วันนี้เราจะพาน้อง ๆ ไปทำความรู้จักกับประวัติความเป็นมาของกาพย์พระไชยสุริยา รวมถึงเรื่องลักษณะคำประพันธ์และสรุปเนื้อเรื่องโดยย่อ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของกาพย์พระไชยสุริยา     กาพย์พระไชยสุริยา เป็นวรรณคดีคำกาพย์ที่สุนทรภู่แต่ง มีความยาว 1 เล่มสมุดไทย นักวรรณคดีและนักวิชาการสันนิษฐานว่าสุนทรภู่แต่งขึ้นขณะบวชอยู่ที่วัดเทพธิดาระหว่าง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1