สัญลักษณ์พื้นฐานเกี่ยวกับเซต

สัญลักษณ์ของเซตจะช่วยให้เราไม่ต้องเขียนประโยคยาวซ้ำๆ และใช้ได้เกือบทุกบทของวิชาคณิตศาสตร์ ช่วยให้ประหยัดเวลาและเนื้อที่บนกระดาษมากๆ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 

ความสำคัญของสัญลักษณ์พื้นฐานเกี่ยวกับเซต

เราจะใช้สัญลักษณ์เกี่ยวกับเซตแทนข้อความหลายๆข้อความ เพื่อความเข้าใจง่าย ทำให้ข้อความดูสั้นลง ในเนื้อหาคณิตศาสตร์ส่วนใหญ่จะใช้สัญลักษณ์เกี่ยวกับเซตค่อนข้างเยอะ เราจึงจำเป็นที่จะต้องรู้จักสัญลักษณ์ต่างๆเพื่อที่จะทำความเข้าใจเนื้อหาต่างๆได้ง่ายขึ้น

สัญลักษณ์พื้นฐานเกี่ยวกับเซต

 

1.) ∈,∉

 แทน เป็นสมาชิกของเซต

แทน ไม่เป็นสมาชิกของเซต

เช่น a เป็นสมาชิกของเซต A จะเขียนแทนด้วย a ∈ A

a ไม่เป็นสมาชิกของเซต A จะเขียนแทนด้วย a ∉ A

2.) =, ≠

= แทน การเท่ากัน

≠ แทนการไม่เท่ากัน

การที่เซตแต่ละเซตจะเท่ากันนั้น สมาชิกทุกตัวในเซตแต่ละเซตต้องเหมือนกัน

เช่น ให้ A = {a,b,c} , B = {c,a,b} และ C = {a,c,f}

จะเห็นกว่า A  และ B มีสมาชิกเหมือนกันทุกตัว

ดังนั้น เซต A เท่ากับ เซต B เขียนแทนด้วยสัญลักษณ์ A = B

แต่ สมาชิกในเซตC มีสมาชิกบางตัวที่ไม่เหมือนกับเซตA และ B

ดังนั้น A ≠ C และ B ≠ C

3.) Ø หรือ { } แทน การเป็นเซตว่าง

เซตว่าง คือ เซตที่ไม่มีสมาชิก

เช่น  A = {x | x เป็นจำนวนนับ และ x<0 }

จากที่เรารู้กันอยู่แล้วว่าจำนวนนับคือ ตัวเลขตั้งแต่ 1,2,3… จะเห็นว่าไม่มีจำนวนนับที่น้อยกว่า 0 ดังนั้น A จึงไม่มีสมาชิก จะได้ว่า A = Ø หรือ จะเขียนว่า A = { } ก็ได้

4.) ⊂ แทน เป็นสับเซตของเซต

เช่น ให้ A = {a,b} B = {a,b,c,d}

จะเห็นกว่า สมาชิกทุกตัวใน A เป็นสมาชิกใน B ด้วย

ดังนั้น A เป็นสับเซตของ B เขียนแทนด้วย A ⊂ B

5.) เรียกว่า ยูเนียน คือ การรวมสมาชิกของเซตหลายเซตมารวมกัน

6.) ∩ เรียกว่า อินเตอร์เซกชัน

ดูเนื้อหาเรื่องสับเซต

ดูเนื้อหาเรื่องการยูเนียนและการอินเตอร์เซคชัน

สัญลักษณ์อื่นๆที่อาจจะเกี่ยวข้อง

สัญลักษณ์ที่เราควรรู้ไว้ เพราะเราจะต้องเจอสัญลักษณ์เหล่านี้ในการเรียนคณิตศาสตร์

R แทน เซตของจำนวนจริง

 แทน จำนวนเต็มศูนย์

I¯แทน เซตของจำนวนเต็มลบ

แทน เซตของจำนวนนับ

 

ตัวอย่าง

 

1.) ให้ A = { x| x เป็นจำนวนนับ และ 1<x<4} และ B = {2,3}

จากโจทย์ จะได้ว่า 2 ∈ A และ 3 ∈ A เพราะ เงื่อนไขบอกว่า x ต้องเป็นจำนวนนับที่มากกว่า 1 และ น้อยกว่า 4 ดังนั้น ค่า x ที่เป็นไปได้คือ 2 และ 3 เท่านั้น

และจากที่เรารู้ว่า สมาชิกของ A ประกอบด้วย 2 และ 3 เราจะสังเกตเห็นว่า สมาชิกทุกตัวของ A เหมือนกับสมาชิกทั้งหมดใน B ดังนั้น เราสามารถสรุปได้ว่า A = B

2.) ให้ C {x,x,x,y} และ D = {x,y}

จากโจทย์ เราจะได้ว่า

 1. x ∈ C , x ∈ D , y ∈ C และ y ∈ D

2. C = D เพราะจะเห็นว่า {x,x,x,y} มีสมาชิกซ้ำกัน  โดยปกติแล้ว ถ้ามีสมาชิกในเซตซ้ำกันเราจะนิยมเขียนเพียงตัวเดียว ดังนั้น {x,x,x,y} สามารถเขียนได้อีกแบบ คือ {x,y}

3.) กำหนดให้ A  = {5,6,7}

B = { x | x เป็นจำนวนเต็มที่สอดคล้องกับสมการ (x-5)(x-6)(x-7) = 0}

C = { x | x เป็นจำนวนเต็ม และ 4< x < 8}
D = { x | x เป็นจำนวนเต็มคี่ที่น้อยกว่า 9 }

พิจารณาข้อความว่าสมาชิกแต่ละเซตมีอะไรบ้าง เซตใดเท่ากันและเซตไหนไม่เท่ากัน

วิธีทำ หาสมาชิกของเซต  B, C และ D

พิจารณา B  ; x เป็นจำนวนเต็มที่สอดคล้องกับสมาการ                    (x-5)(x-6)(x-7) = 0 จะได้ว่า x = 5,6,7

ดังนั้น 5 ∈ B , 6 ∈ B และ 7 ∈ B เขียนเซต B แบบแจกแจงสมาชิกจะได้         B = {5,6,7}

พิจารณา C ; x เป็นจำนวนเต็มที่มากกว่า 4 และน้อยกว่า 8 ดังนั้น       x = 5,6,7

จะได้ว่า 5,6,7 ∈ C เขียนเซต C แบบแจกแจงสมาชิกจะได้ C = {5,6,7}

พิจารณา D ; x เป็นจำนวนเต็มคี่ที่น้อยกว่า 9 ดังนั้น D = {…,-3,-1,1,3,5,7}

จาก B = {5,6,7}, C = {5,6,7} และ D = {…,-3,-1,1,3,5,7}

ดังนั้น A=B=C แต่ A ≠ D , B ≠ D และ C ≠ D

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เสียงวรรณยุกต์ในภาษาไทยมีความสำคัญอย่างไร

  เสียงวรรณยุกต์ในภาษาไทยมีความสำคัญไม่แพ้เสียงพยัญชนะและเสียงวรรณยุกต์เลยค่ะ น้อง ๆ ทราบไหมคะว่าเสียงวรรณยุกต์ในภาษาไทยเรานั้นเป็นเหมือนตัวกำหนดความหมายของคำเลยก็ว่าได้ ทำไมถึงเป็นแบบนั้น วันนี้เรามีคำตอบให้แล้วค่ะ เราไปเรียนรู้เกี่ยวเสียงวรรณยุกต์พร้อมๆ กันเลยค่ะว่าทำไมถึงมีความสำคัญ   เสียงวรรณยุกต์คืออะไร   เสียงวรรณยุกต์ หมายถึง เสียงที่ใช้บอกระดับสูงต่ำของคำ มี 4 รูป 5 เสียง   รูปวรรณยุกต์   รูปวรรณยุกต์มี 4

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น ระบบสมการเชิงเส้น คือระบบสมการที่มีดีกรีเป็นหนึ่ง ซึ่งก็คือเลขชี้กำลังของตัวแปรเป็นหนึ่งนั่นเอง ซึ่งในตอนมัธยมต้นน้องๆได้เรียนระบบสมการเชิงเส้น 2 ตัวแปรไปแล้ว ระบบสมการเชิงเส้นสองตัวแปร เช่น แล้วเราก็แก้สมการหาค่า x, y  (ซึ่งอาจจะมีคำตอบหรือไม่มีก็ได้) แต่ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับระบบสมการเชิงเส้น n ตัวแปร นั่นก็คือน้องๆจะต้องหาคำตอบของตัวแปร n ตัวตัว ซึ่งการหาคำตอบนั้นมีหลายวิธีไม่ว่าจะเป็นการใช้เมทริกซ์ (ซึ่งน้องๆจะได้เรียนในบทความถัดๆไป) หรือการแก้สมการธรรมดาและในข้อสอบส่วนใหญ่จะเน้นให้น้องๆหาคำตอบในระบบสมการเชิงเส้นที่ไม่เกิน 3 ตัวแปร เพราะถ้าเกินกว่านั้นอาจจะใช้เวลาในการหาคำตอบมาก

ศึกษาตัวบทและคุณค่าที่แฝงอยู่ในสุภาษิตพระร่วง

สุภาษิตพระร่วง   หลังได้เรียนรู้เรื่องประวัติความเป็นมาของสุภาษิตพระร่วงไปแล้ว น้อง ๆ ก็คงอยากรู้ใช่ไหมคะว่าในเรื่องสุภาษิตพระร่วงนั้นสอดแทรกคำสอนเรื่องใดไว้บ้าง รวมถึงคุณค่าที่อยู่ในวรรณคดีอันทรงคุณค่าเรื่องนี้ด้วย บทเรียนวันนี้จะพาน้อง ๆ ทุกคนไปศึกษาตัวบทเด่น ๆ ที่น่าสนใจในสุภาษิตพระร่วงพร้อมเรียนรู้ถึงคุณค่าของเรื่องนี้กันค่ะ   ศึกษาตัวบทที่น่าสนใจในเรื่องสุภาษิตพระร่วง     คำสอนที่ปรากฏในตัวบท ควรเรียนเพื่อนเป็นประโยชน์แก่ตัวเอง เป็นเด็กควรเรียนหนังสือ พอโตขึ้นค่อยหาเงิน ทำอะไรให้เหมาะสมกับวัย อย่าเอาของคนอื่นมาเป็นของตัวเอง อย่ารีบด่วนสรุปเรื่อง่าง ๆ ให้ประพฤติตนตามแบบวัฒนธรรมที่ดีงาม

งานอดิเรก (Hobbies) ในยุคปัจจุบัน

  ในปัจจุบันงานอดิเรก (Hobbies) นอกจากจะเป็นสิ่งที่ทำให้เราสนุกแล้วยังสามารถเพิ่มพูนทักษะใหม่ๆ  ให้เราได้อีกด้วย  หากมีใครก็ตามถามว่า what do you like to do in your free time? คุณชอบทำอะไรในเวลาว่าง ครูเชื่อว่านักเรียนจะต้องมีหลายคำตอบ เพราะปัจจุบันมีหลายสิ่งหลายอย่างให้ทำเยอะมาก แต่เหนือสิ่งอื่นใด งานอดิเรกนั้นต้องทำให้เราสนุกและมีความสุขกับการได้ทำมันแน่ๆ “Do what you love,

NokAcademy_Finite and Non- Finite Verb

Finite and Non- Finite Verb

Hi guys! สวัสดีค่ะนักเรียนชั้นม.6 ทุกคน วันนี้ครูจะพาไปทบทวนการใช้ “Finite and Non- Finite Verb” ในภาษาอังกฤษกันจร้า ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า   คำเตือน: การเรียนเรื่องนี้จะทำให้นักเรียนมึนงงได้หากว่าพื้นฐานเรื่อง Part of speech, Subject , Tense, Voice และ Mood ของเราไม่แน่น

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง การแก้สมการกำลังสอง สามารถทำได้โดยการ แยกตัวประกอบพหุนามกำลังสอง และใช้สูตร เราแก้สมการเพื่อหาคำตอบหรือหาค่าของตัวแปร ในบทความนี้พี่จะพูดถึงสมการกำลังสองตัวแปรเดียว ซึ่งอยู่ในรูป ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0 ตัวอย่างสมการกำลังสองตัวแปรเดียว 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1