สัญลักษณ์พื้นฐานเกี่ยวกับเซต

สัญลักษณ์ของเซตจะช่วยให้เราไม่ต้องเขียนประโยคยาวซ้ำๆ และใช้ได้เกือบทุกบทของวิชาคณิตศาสตร์ ช่วยให้ประหยัดเวลาและเนื้อที่บนกระดาษมากๆ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 

ความสำคัญของสัญลักษณ์พื้นฐานเกี่ยวกับเซต

เราจะใช้สัญลักษณ์เกี่ยวกับเซตแทนข้อความหลายๆข้อความ เพื่อความเข้าใจง่าย ทำให้ข้อความดูสั้นลง ในเนื้อหาคณิตศาสตร์ส่วนใหญ่จะใช้สัญลักษณ์เกี่ยวกับเซตค่อนข้างเยอะ เราจึงจำเป็นที่จะต้องรู้จักสัญลักษณ์ต่างๆเพื่อที่จะทำความเข้าใจเนื้อหาต่างๆได้ง่ายขึ้น

สัญลักษณ์พื้นฐานเกี่ยวกับเซต

 

1.) ∈,∉

 แทน เป็นสมาชิกของเซต

แทน ไม่เป็นสมาชิกของเซต

เช่น a เป็นสมาชิกของเซต A จะเขียนแทนด้วย a ∈ A

a ไม่เป็นสมาชิกของเซต A จะเขียนแทนด้วย a ∉ A

2.) =, ≠

= แทน การเท่ากัน

≠ แทนการไม่เท่ากัน

การที่เซตแต่ละเซตจะเท่ากันนั้น สมาชิกทุกตัวในเซตแต่ละเซตต้องเหมือนกัน

เช่น ให้ A = {a,b,c} , B = {c,a,b} และ C = {a,c,f}

จะเห็นกว่า A  และ B มีสมาชิกเหมือนกันทุกตัว

ดังนั้น เซต A เท่ากับ เซต B เขียนแทนด้วยสัญลักษณ์ A = B

แต่ สมาชิกในเซตC มีสมาชิกบางตัวที่ไม่เหมือนกับเซตA และ B

ดังนั้น A ≠ C และ B ≠ C

3.) Ø หรือ { } แทน การเป็นเซตว่าง

เซตว่าง คือ เซตที่ไม่มีสมาชิก

เช่น  A = {x | x เป็นจำนวนนับ และ x<0 }

จากที่เรารู้กันอยู่แล้วว่าจำนวนนับคือ ตัวเลขตั้งแต่ 1,2,3… จะเห็นว่าไม่มีจำนวนนับที่น้อยกว่า 0 ดังนั้น A จึงไม่มีสมาชิก จะได้ว่า A = Ø หรือ จะเขียนว่า A = { } ก็ได้

4.) ⊂ แทน เป็นสับเซตของเซต

เช่น ให้ A = {a,b} B = {a,b,c,d}

จะเห็นกว่า สมาชิกทุกตัวใน A เป็นสมาชิกใน B ด้วย

ดังนั้น A เป็นสับเซตของ B เขียนแทนด้วย A ⊂ B

5.) เรียกว่า ยูเนียน คือ การรวมสมาชิกของเซตหลายเซตมารวมกัน

6.) ∩ เรียกว่า อินเตอร์เซกชัน

ดูเนื้อหาเรื่องสับเซต

ดูเนื้อหาเรื่องการยูเนียนและการอินเตอร์เซคชัน

สัญลักษณ์อื่นๆที่อาจจะเกี่ยวข้อง

สัญลักษณ์ที่เราควรรู้ไว้ เพราะเราจะต้องเจอสัญลักษณ์เหล่านี้ในการเรียนคณิตศาสตร์

R แทน เซตของจำนวนจริง

 แทน จำนวนเต็มศูนย์

I¯แทน เซตของจำนวนเต็มลบ

แทน เซตของจำนวนนับ

 

ตัวอย่าง

 

1.) ให้ A = { x| x เป็นจำนวนนับ และ 1<x<4} และ B = {2,3}

จากโจทย์ จะได้ว่า 2 ∈ A และ 3 ∈ A เพราะ เงื่อนไขบอกว่า x ต้องเป็นจำนวนนับที่มากกว่า 1 และ น้อยกว่า 4 ดังนั้น ค่า x ที่เป็นไปได้คือ 2 และ 3 เท่านั้น

และจากที่เรารู้ว่า สมาชิกของ A ประกอบด้วย 2 และ 3 เราจะสังเกตเห็นว่า สมาชิกทุกตัวของ A เหมือนกับสมาชิกทั้งหมดใน B ดังนั้น เราสามารถสรุปได้ว่า A = B

2.) ให้ C {x,x,x,y} และ D = {x,y}

จากโจทย์ เราจะได้ว่า

 1. x ∈ C , x ∈ D , y ∈ C และ y ∈ D

2. C = D เพราะจะเห็นว่า {x,x,x,y} มีสมาชิกซ้ำกัน  โดยปกติแล้ว ถ้ามีสมาชิกในเซตซ้ำกันเราจะนิยมเขียนเพียงตัวเดียว ดังนั้น {x,x,x,y} สามารถเขียนได้อีกแบบ คือ {x,y}

3.) กำหนดให้ A  = {5,6,7}

B = { x | x เป็นจำนวนเต็มที่สอดคล้องกับสมการ (x-5)(x-6)(x-7) = 0}

C = { x | x เป็นจำนวนเต็ม และ 4< x < 8}
D = { x | x เป็นจำนวนเต็มคี่ที่น้อยกว่า 9 }

พิจารณาข้อความว่าสมาชิกแต่ละเซตมีอะไรบ้าง เซตใดเท่ากันและเซตไหนไม่เท่ากัน

วิธีทำ หาสมาชิกของเซต  B, C และ D

พิจารณา B  ; x เป็นจำนวนเต็มที่สอดคล้องกับสมาการ                    (x-5)(x-6)(x-7) = 0 จะได้ว่า x = 5,6,7

ดังนั้น 5 ∈ B , 6 ∈ B และ 7 ∈ B เขียนเซต B แบบแจกแจงสมาชิกจะได้         B = {5,6,7}

พิจารณา C ; x เป็นจำนวนเต็มที่มากกว่า 4 และน้อยกว่า 8 ดังนั้น       x = 5,6,7

จะได้ว่า 5,6,7 ∈ C เขียนเซต C แบบแจกแจงสมาชิกจะได้ C = {5,6,7}

พิจารณา D ; x เป็นจำนวนเต็มคี่ที่น้อยกว่า 9 ดังนั้น D = {…,-3,-1,1,3,5,7}

จาก B = {5,6,7}, C = {5,6,7} และ D = {…,-3,-1,1,3,5,7}

ดังนั้น A=B=C แต่ A ≠ D , B ≠ D และ C ≠ D

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ช่วงของจำนวนจริง

ช่วงของจำนวนจริง ช่วงของจำนวนจริง เอาไว้บอกขอบเขตของตัวแปรตัวแปรหนึ่ง เช่น x เป็นตัวแปรที่ไม่ทราบค่า a, b เป็นค่าคงที่ใดๆ a < x < b หมายความว่า ค่าของ x อยู่ระหว่าง a ถึง b เป็นต้น ช่วงของจำนวนจริง ประกอบไปด้วย ช่วงเปิดและช่วงปิด

การวัดพื้นที่ ม.2

ในบทความนี้เราจะได้เรียนรู้มาตราต่างๆของหน่วยในระบบที่ใช้กันอย่างแพร่หลาย รวมทั้งสูตรต่างๆที่ใช้ในการหาพื้นที่ เพื่อให้เราได้นำไปใช้ได้อย่างถูกต้อง

ระบบจำนวนจริง

ระบบจำนวนจริง

ระบบจำนวนจริง “ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ โครงสร้าง ระบบจำนวนจริง มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น   โครงสร้าง     จำนวนจริง จำนวนจริงคือจำนวนที่ประกอบไปด้วย

M6 Phrasal Verbs

Phrasal Verbs 

สวัสดีค่ะนักเรียนชั้นม.6 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “Phrasal Verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด   ความหมาย Phrasal Verbs  Phrasal Verbs คือ คำกริยา โดยเป็นกริยาที่มีคำอื่นๆ อย่างเช่น คำบุพบท (Preposition) ร่วมกันส่วนใหญ่แล้ว Phrasal Verbs จะบอกถึงการกระทำ มักจะเจอในชีวิตประจำวันในสถานการณ์ทั่วไป ไม่เป็นทางการมาก ข้อดีคือจะทำให้ภาษาใกล้เคียงกับเจ้าของภาษามากขึ้นนั่นเองจ้า

เรขาคณิตสามมิติ

เรขาคณิตสามมิติ

ในบทความนี้เราจะได้เรียนรู้กับรูปเรขาคณิตสามมิติและส่วนประกอบต่างๆ เพื่อนำไปประยุกต์ใช้ในชีวิตประจำวันได้อย่างถูกต้อง

NokAcademy_ ม5 Passive Modals

Passive Modals

สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ   Passive Modals คืออะไร   Passive Modals หรือ Modal Verbs in the Passive Voice คือ 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1