สมบัติของรูปสามเหลี่ยมมุมฉาก

ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย
สมบัติของรูปสามเหลี่ยมมุมฉาก

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ในชีวิตประจำวันของเราเกี่ยวข้องกับรูปเรขาคณิตเสมอ เราใช้สมบัติของรูปเรขาคณิตในงานก่อสร้าง เช่นใช้สมบัติของรูปสามเหลี่ยมในการประกอบโครงของบ้านหรืออาคาร โดยใช้มุมฉากในการตั้งเสาบ้านให้ตั้งฉากกับพื้นดินเพื่อให้บ้านแข็งแรงและรับน้ำหนักได้ดี หรือสร้างไม้ค้ำประกอบเป็นรูปสามเหลี่ยมมุมฉากค้ำชายคาบ้านให้แข็งแรงมั่นคง

สมบัติของรูปสามเหลี่ยมมุมฉาก

พิจารณารูปสามเหลี่ยมมุมฉาก ABC ที่มี B เป็นมุมฉาก

สมบัติรูปสามเหลี่ยมมุมฉาก

ความสัมพันธ์ระหว่างความยาวของด้านทั้งสามของรูปสามเหลี่ยมมุมฉากข้างต้นเป็นไปตามสมบัติของรูปสามเหลี่ยมมุมฉากที่กล่าวว่า

“สำหรับรูปสามเหลี่ยมมุมฉากใดๆ กำลังสองของความยาวของด้านตรงข้ามมุมฉากเท่ากับผลบวกของกำลังสองของความยาวของด้านประกอบมุมฉาก”

ซึ่งสมบัติข้างต้นนี้เรียกว่า ทฤษฎีบทพีทาโกรัส และเชื่อว่านักคณิตศาสตร์ชาวกรีกชื่อพีทาโกรัสเป็นผู้พิสูจน์ได้เป็นคนแรก

นั่นคือ รูปสามเหลี่ยมมุมฉาก ABC ใด ๆ ที่มี B เป็นมุมฉาก ถ้ากำหนดให้ b แทนความยาวของด้านตรงข้ามมุมฉาก a และ c แทนความยาวของด้านประกอบมุมฉาก ดังรูป

สามเหลี่ยมมุมฉาก

ตัวอย่างที่ 1

จากรูปสี่เหลี่ยมมุมฉากที่กำหนดให้ในแต่ละข้อต่อไปนี้ ให้เขียนความสัมพันธ์ระหว่างด้านทั้งสาม

ตัวอย่างสามเหลี่ยมมุมฉาก

วิธีทำ จากรูปในแต่ละข้อสามารถเขียนความสัมพันธ์ของด้านทั้งสามได้ดังนี้

สามเหลี่ยมมุมฉาก

ตัวอย่างที่ 2 จากรูปที่กำหนดให้ในแต่ละข้อต่อไปนี้ จงหาความยาวของด้านที่เหลือ

สามเหลี่ยมมุมฉาก

สามเหลี่ยมมุมฉาก

ตัวอย่างที่ 3 ชายคนหนึ่งเดินทางไปทิศตะวันออกได้ 24 ไมล์ แล้วเดินทางเลี้ยวไปทางทิศเหนืออีก 32 ไมล์ อยากทราบว่าชายคนนี้อยู่ห่างจากจุดเดิมไมล์

วิธีทำ เขียนแผนผังการเดินทางของชายคนหนึ่งโดยเริ่มที่จุด A สมมติให้ชายคนนั้นอยู่ห่าง x ไมล์

พีทาโกรัส

คลิปตัวอย่างเรื่องสมบัติของรูปสามเหลี่ยมมุมฉาก

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.5 M6 Gerund

Gerund พร้อมแนวข้อสอบ ม.6

  สวัสดีค่ะนักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” กันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า

ความสัมพันธ์ที่ “รู้จักฉัน รู้จักเธอ” ของเศษส่วนและทศนิยม

เศษส่วนและทศนิยมมีความสัมพันธ์กันคือสามารถเขียนเศษส่วนให้อยู่ในรูปของทศนิยมหรือเขียนทศนิยมให้อยู่ในรูปของเศษส่วนได้โดยค่าของเศษส่วน และทศนิยมนั้นจะมีค่าเท่ากัน บทความนี้จะอธิบายหลักการความสัมพันธ์ของเศษส่วนและทศนิยมพร้อมวิธีคิดที่เห็นภาพ ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้ คือการเปลี่ยนเศษส่วนให้เป็นทศนิยมและการเปลี่ยนทศนิยมให้เป็นเศษส่วนแล้วยังมีเทคนิคการสังเกตง่ายๆที่จะสามารถทำให้เราทำได้อย่างรวดเร็วและถูกต้องยิ่งขึ้น

NokAcademy_ม5 การใช้ Modal Auxiliaries

Modal Auxiliaries ที่สำคัญ

สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modal Auxiliaries หรือ Modal verbs “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า รู้จักกับ Modal Auxiliaries   Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

เรียนรู้ตัวบทเด่นของบทละครพูดคำฉันท์เรื่องดัง มัทนะพาธา

มัทนะพาธา เป็นบทละครพูดคำฉันท์ที่ประพันธ์โดยรัชกาลที่ 6 ซึ่งพระองค์ทรงคิดขึ้นเองไม่ได้แปลหรือดัดแปลงมาจากเรื่องใด จากการศึกษาความเป็นมาในบทเรียนคราวที่แล้วทำให้เราได้รู้ที่มา ลักษณะคำประพันธ์รวมไปถึงเรื่องย่อของเรื่องกันไปแล้ว บทเรียนในวันนี้เราจะศึกษาตัวบทเด่น ๆ ของเรื่องกันนะคะว่ามีบทใดที่ได้ชื่อว่าเป็นวรรคทอง ถอดความ พร้อมทั้งเรียนรู้คุณค่าของานประพันธ์ชิ้นนี้อีกด้วย ถ้าน้อง ๆ อยากรู้แล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ตัวบทเด่น ๆ ใน มัทนะพาธา     ถอดความ บทนี้เป็นคำพูดของฤษีกาละทรรศินที่กำลังอธิบายให้ศุภางค์ แม่ทัพของท้าวชัยเสนว่าเหตุใดพระฤษีจึงเห็นว่าการห้ามปรามความรักระหว่างพระชัยเสนกับมัทนาเป็นสิ่งไร้ประโยชน์ โดยบอกว่า

วงกลม

วงกลม

วงกลม วงกลม ประกอบด้วยจุดศูนย์กลาง (center) เส้นผ่านศูนย์กลาง และรัศมี (radius) สมการรูปแบบมาตรฐานของวงกลม สมการรูปแบบมาตรฐานของวงกลมที่มีจุดศูนย์กลางที่ (h, k) คือ (x-h)² + (y-k)² = r² จากสมการ จะได้ว่า มีจุดศูนย์กลางที่ (h, k) และรัศมี r จะเห็นว่าถ้าเรารู้สมการมาตรฐานเราจะรู้รัศมี

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1