รากที่สอง

การหารากที่สองของจำนวนจริงทำได้หลายวิธี สำหรับวิธีการคำนวณ นักเรียนจะได้เรียนในระดับชั้นที่สูงกว่านี้ สำหรับในชั้นนี้ นักเรียนอาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง
รากที่สอง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

วิธีการถอดกรณฑ์หรือรากที่สองนั้นไม่ได้ยากเหมือนหน้าตาของมันเลย การจะถอดรากที่สองนั้นคุณแค่ต้องแยกตัวประกอบตัวเลขแล้วดึงรากของจำนวนกำลังสองสมบูรณ์ใดๆ ที่หาได้ในเครื่องหมายกรณฑ์นั้น พอคุณเริ่มจำจำนวนกำลังสองสมบูรณ์ที่พบบ่อยไม่กี่ตัวนั้นได้และรู้วิธีแยกตัวประกอบของตัวเลขแล้ว คุณก็กำลังอยู่ในเส้นทางที่จะถอดรากที่สองได้แล้ว

นิยามของรากที่สอง

ให้ a แทนจำนวนจริงบวกใด ๆ หรือศูนย์ รากที่สองของ a คือจำนวนจริงที่ยกกำลังสองแล้วได้ a

สำหรับรากที่สองของจำนวนจริงลบจะไม่กล่าวถึง ณ ที่นี้เพราะไม่มีจำนวนจริงใดที่ยกกำลังสองแล้วได้จำนวนจริงลบ แต่จะกล่าวถึงในการเรียนขั้นสูงต่อไป

ตัวอย่างของรากที่สอง

-7 เป็นรากที่สองของ 49              เพราะ (-7)2 = 49

10 เป็นรากที่สองของ 100             เพราะ 102 = 100

25 เป็นรากที่สองของ 625            เพราะ 252 =  625

-25 เป็นรากที่สองของ 625           เพราะ (-25) = 625

ดังนั้นถ้า a เป็นจำนวนจริงบวก รากที่สองของ a มี 2 ราก คือรากที่สองที่เป็นบวก และรากที่สองที่เป็นลบ

และถ้า a = 0 รากที่สองของ a คือ 0

สแควรูท

จากตัวอย่างทั้งสามข้อจะเห็นว่า รากที่สองของบางจำนวนเป็นจำนวนตรรกยะ และรากที่สองของบางจำนวนเป็นจำนวนอตรรกยะ

รากที่สอง

การหาค่ารากที่สองของจำนวนจริงบวกใด ๆ การจัดให้อยู่ในรูปกำลังสองจะทำให้หาผลลัพธ์ได้รวดเร็วดังนั้นจึงนิยมจัดรูปเป็นกำลังสอง แต่เนื่องจากจำนวนที่ยกกำลังแล้วได้จำนวนจริงบวกที่ต้องการมีหลายจำนวนเช่น

ตัวอย่างรากที่สอง

ดังนั้นเพื่อจัดอยู่ในรูปทั่วไปจึงกำหนดนิยามเพิ่มเติมต่อไปนี้

นิยามรากที่สอง

สรุปรากที่สอง

 การหารากที่สองของจำนวนเต็มบวก

  1. ถ้าสามารถหาจำนวนเต็มบวกจำนวนหนึ่งที่ยกกำลังสองแล้วเท่ากับจำนวนเต็มบวกที่กำหนดให้รากที่สองของจำนวนนั้นจะเป็นจำนวนตรรกยะที่เป็นจำนวนเต็ม
  2. ถ้าไม่สามารถหาจำนวนเต็มบวกที่ยกกำลังสองแล้วเท่ากับจำนวนเต็มบวกที่กำหนดให้รากที่สองของจำนวนจะเป็นจำนวนอตรรกยะ

รากที่สองของจำนวนเต็มบวก

จำนวนตรรกยะอื่น ๆ ที่ไม่ใช่จำนวนเต็มพิจารณาดังนี้ถ้าสามารถหาจำนวนตรรกยะที่ยกกำลังสองแล้วเท่ากับจำนวนตรรกยะบวกที่กำหนดให้รากที่สองของจำนวนนั้นจะเป็นจำนวนตรรกยะ แต่ถ้าไม่สามารถหาจำนวนตรรกยะที่ยกกำลังสองแล้วเท่ากับจำนวนตรรกยะบวกที่กำหนดให้รากที่สองของจำนวนนั้นจะเป็นจำนวนอตรรกยะ

รากที่สองของจำนวนเต็มบวก

การหาค่าของรากที่สอง

1.การหาค่าของรากที่สองโดยวิธีการแยกตัวประกอบ ใช้สำหรับจำนวนจริงที่สามารถแจกตัวประกอบได้เป็นจำนวนตรรกยะ ซึ่งพิจารณาได้ดังตัวอย่างต่อไปนี้

หาค่ารากที่สอง

2. การหาค่าของรากที่สองจากตาราง ซึ่งตารางนี้มีผู้สร้างขึ้นเพื่อความสะดวกในการนำไปใช้ โดยตารางนี้เป็นการแสดงรากที่สองที่เป็นบวกของจำนวนเต็มบวก

ตารางค่าของรากที่สอง3.การหาค่ารากที่สองดดวิธีการตั้งหาร มีหลักการดังนี้

3.1 แบ่งจำนวนที่ต้องการหาค่ารากที่สองออกเป็นชุดๆ ชุดละ 2ตัว โดยตัวเลขหน้าจุดแบ่งจากขวามาซ้าย และเลขหลังจุดแบ่งจากซ้ายไปขวา เช่น

รากที่สอง3.2 นำจำนวนที่ต้องการหารากที่สองมาหารยาว โดยมีวิธีการดังตัวอย่างต่อไปนี้

รากที่สอง

ตัวอย่างคลิปเรื่องรากที่สอง

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

นิทานเวตาล เรื่องเล่าที่สอดแทรกคติธรรมไว้มากมาย

นิทานเวตาล เป็นวรรณคดีอินเดียโบราณที่มีประวัติความเป็นมายาวนานนับพันปี มีเนื้อหาที่บันเทิงแต่ก็สอดแทรกปริศนาธรรมและคติธรรมคำสอนไว้เพื่อเป็นเครื่องกล่อมเกลาจิตใจมนุษย์ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาและเรื่องย่อจากวรรณคดีเรื่องนี้กันค่ะว่าจะมีความน่าสนใจอย่างไรบ้าง ถ้าพร้อมแล้ว ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของนิทานเวตาล     นิทานเวตาล หรือ เวตาลปัญจวิงศติ เป็นวรรณกรรมอินเดียโบราณ กวีคนแรกที่เป็นคนแต่งคือ ศิวทาส เมื่อ 2.500 ปี ต่อมาโสมเทวะ กวีชาวแคว้นกัษมีระได้นํามา

แบบฝึกหัดความสัมพันธ์

แบบฝึกหัดความสัมพันธ์ แบบฝึกหัดความสัมพันธ์ เป็นการทบทวนเนื้อหาเกี่ยวกับความสัมพันธ์ ได้แก่ เรื่องโดเมนและเรนจ์ของความสัม กราฟของความสัมพันธ์ และตัวผกผันของความสัมพันธ์ ก่อนทำแบบฝึกหัดความสัมพันธ์ บทความที่น้องๆควรรู้ คือ โดเมนของความสัมพันธ์ เรนจ์ของความสัมพันธ์ กราฟของความสัมพันธ์ ตัวผกผันของความสัมพันธ์   แบบฝึกหัด 1.) ถ้า (x, 5) = (3, x – y)

รากที่สาม

รากที่สาม

ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

NokAcademy_ม6 Relative Clause

ทบทวนเรื่อง Relative clause + เทคนิค Error Identification

สวัสดีค่ะนักเรียนม. 6 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อมากขึ้น พร้อมข้อสอบ Error

โจทย์ปัญหาสัดส่วน 2

บทความนี้น้องๆจะได้เรียนรู้หลักการที่ใช้ในการแก้โจทย์ปัญหาสัดส่วนด้วยวิธีการที่หลากหลายและเข้าใจง่าย สามารถนำไปช่วยในแก้โจทย์ปัญหาในห้องเรียนของน้องๆได้

อนุกรมเลขคณิต

อนุกรมเลขคณิต

อนุกรมเลขคณิต อนุกรมเลขคณิต คือการนำลำดับเลขคณิตแต่ละพจน์มาบวกกัน โดย เขียนแทนด้วย จากบทความ “สัญลักษณ์การบวก” ซึ่งเป็นการลดรูปการเขียนจำนวนหลายจำนวนบวกกัน ในบทความนี้จะพูดถึงการบวกของลำดับเลขคณิต การหาผลบวก สูตรสำหรับการหาผลบวกเลขคณิต สูตรอนุกรมเลขคณิต สูตรของอนุกรมเลขคณิตมีอยู่ 2 สูตร ดังนี้ 1)   โดยที่ d คือ ผลต่างร่วม 2)   โดยจะใช้สูตรนี้ก็ต่อเมื่อรู้ค่า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1