ฟังก์ชันผกผัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย f^{-1} เมื่อ f เป็นฟังก์ชัน

จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป

เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ

ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

พิจารณาตัวผกผันของ f เท่ากับ {(2, 1), (2, 3), (5, 4), (5, 6)}  จากนิยามของฟังก์ชัน ถ้าตัวหน้าเท่ากันแล้วตัวหลังจะต้องเท่ากัน ทำให้ได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างตัวผกผันของฟังก์ชัน

หาฟังก์ชันผกผันของ  เมื่อ

1.) f(x) = \frac{1}{x-2}

ให้ f(x) = y

ขั้นตอนที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x=\frac{1}{y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้  ฟังก์ชันผกผัน

ดังนั้น  = \frac{1}{x}+2  เมื่อ x ≠ 0 (เพราะถ้า x =0จะหาค่าไม่ได้)

2.) f(x) = \sqrt{x+3}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \sqrt{y+3}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ 

ดังนั้น f^{-1}(x) = x^2-3

 

3.) f(x) = \frac{2x-3}{3x-2}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \frac{2y-3}{3y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ ฟังก์ชันผกผัน

ดังนั้น f^{-1}(x) = \frac{2x-3}{3x-2}  เมื่อ x ≠  \frac{2}{3}

 

ให้ f(x) = 3x + 5 จงหา

4.) f^{-1}(3)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย 3

จะได้  f^{-1}(3) = \frac{5-3}{3}=\frac{2}{3}

 

5.) f^{-1}(-1)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย -1

จะได้  f^{-1}(-1) = \frac{5-(-1)}{3}=\frac{5+1}{3}=\frac{6}{3}=2

 

การตรวจสอบว่าตัวผกผันของ f เป็นฟังก์ชันหรือไม่

การตรวจสอบทำได้ 2 วิธี คือ

  1. หาตัวผกผันมาก่อนแล้วเช็คว่าตัวผกผันนั้นเป็นฟังก์ชันหรือไม่
  2. หาจากทฤษฎีบทต่อไปนี้

ตัวผกผันของ f เป็นฟังก์ชัน ก็ต่อเมื่อ f เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ขยายความทฤษฎีบท

ฟังก์ชันผกผันเรามีข้อความอยู่สองข้อความ ที่มีตัวเชื่อม ก็ต่อเมื่อขั้นกลางอยู่

ถ้าเรารู้ว่าฝั่งใดฝั่งหนึ่งจริง เราสามารถสรุปข้อความอีกฝั่งหนึ่งได้เลย

เช่น ถ้าเรารู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน เราก็จะรู้ด้วยว่า f เป็นฟังก์ชัน

ในขณะเดียวกัน ถ้าเรารู้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราก็จะรู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน

 

แต่ ถ้าเรารู้ว่าข้อความฝั่งหนึ่งไม่จริง เราก็สามารถสรุปได้เช่นกันว่า ข้อความอีกฝั่งก็ไม่จริง

เช่น เรารู้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน เราสามารถสรุปได้เลยว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ถ้าเรารู้ว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราสามารถสรุปได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างการตรวจสอบ ฟังก์ชันผกผัน

 

ให้ f เป็นฟังก์ชัน ที่ f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

วิธีทำ 1 จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะได้ว่า f^{-1}  = {(y, x ) : y, x ∈ \mathbb{R} และ y = 2x + 3}

หรือเขียนได้อีกแบบคือ f^{-1} = {(x, y) : x, y ∈ \mathbb{R} และ x = 2y + 3}  << ตรงสมการ เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะตรวจสอบว่า f^{-1} เป็นฟังก์ชันหรือไม่ โดยสมมติคู่อันดับมาสองคู่ ให้เป็น (x_1, y_1),(x_1,y_2) ซึ่งทั้งสองคู่อันดับนี้ เป็นคู่อันดับใน f^{-1}

ดังนั้นเราสามารถแทน คู่อันดับทั้งสองไปในสมการ x = 2y + 3 ได้

ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันจะได้ว่า f^{-1} เป็นฟังก์ชันเพราะ เมื่อสมาชิกตัวหน้าของคู่อันดับเหมือนกันสมาชิกตัวหลังก็เหมือนกันด้วย

วิธีที่ 2  จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะตรวจสอบว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่เพื่อนำมาสรุปการเป็นฟังก์ชันของf^{-1} 

สมมติให้ (x_1,y_1),(x_2,y_1) เป็นคู่อันดับใน f 

ดังนั้นเราสามารถแทนคู่อันดับทั้งสองคู่อันดับในสมการ y = 2x + 3 ได้

ได้เป็น ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันหนึ่งต่อหนึ่ง จะได้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพราะเมื่อเราให้สมาชิกตัวหลังเท่ากันแล้วเราได้ว่าสมาชิกตัวหน้าก็เท่ากัน

และ จาก f เป็นฟังก์ชันหนึ่งต่อหนึ่งเลยทำให้สรุปได้ว่า f^{-1} เป็นฟังก์ชัน

 

จากวิธีทั้งสองวิธี น้องๆสามารถเลือกวิธีตรวจสอบที่ตัวเองถนัดได้เลย ได้คำตอบเหมือนกันจ้า

 

เนื้อหาที่ควรรู้เพื่อง่ายต่อการทำความเข้าใจ

 

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

3 ขั้นตอนการเขียนโครงงานอย่างง่ายที่ไม่ว่าใครก็ทำได้

ในเมื่อมีการเขียนรายงานแล้วทำไมถึงยังต้องมีการเขียนโครงงาน? น้อง ๆ เคยสงสัยไหมคะว่า การเขียนโครงงาน นั้นไม่เหมือนกับรายงานทั่วไปอย่างไร มีองค์ประกอบและขั้นตอนการเขียนอย่างไร ถ้าอยากรู้แล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยนะคะ   โครงงานคืออะไร   โครงงานเป็นกิจกรรมที่เน้นกระบวนการโดยผู้เรียนจะเป็นผู้คิดค้น วางแผน ลงมือปฏิบัติตามแผนที่วางไว้ อาศัยเครื่องมือและวัสดุอุปกรณ์ในการปฏิบัติ เพื่อให้โครงงานสำเร็จภายใต้คำแนะนำ การกระตุ้นความคิด กระตุ้นการทำงานของครูผู้สอนหรือผู้เชี่ยวชาญ ตั้งแต่คิดสร้างโครงงาน ลงมือปฏิบัติ ไปจนถึงประเมินผล   ความสำคัญของโครงงาน    

ความยาวรอบรูปเเละพื้นที่ของวงกลม

ความยาวรอบรูปเเละพื้นที่ของวงกลม ความยาวรอบรูปของวงกลม หรือเรียกว่า ความยาวเส้นรอบวงของวงกลม คือ ความยาวของเส้นรอบวงกลมสามารถคำนวณได้ ดังนี้ โดย:  C        คือ ความยาวของเส้นรอบวง (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น) π         คือ อัตราส่วนระหว่างเส้นรอบวงกับรัศมี มีค่าประมาณ 22/7 หรือ

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์ การบวก ลบ และคูณเมทริกซ์ เราจะนำสมาชิกของเมทริกซ์แต่ละเมทริกซ์มาบวก ลบ คูณกัน ซึ่งการดำเนินการเหล่านี้มีสมบัติและข้อยกเว้นต่างกันไป เช่น การบวกต้องเอาสมาชิกตำแหน่งเดียวกันมาบวกกัน เป็นต้น ต่อไปเราจะมาดูวิธีการบวก ลบ และคูณเมทริกซ์กันค่ะ การบวกเมทริกซ์ เมทริกซ์ที่จะนำมาบวกกันได้นั้น ต้องมีมิติเท่ากัน และการบวกจะนำสมาชิกตำแหน่งเดียวกันมาบวกกัน เช่น 1.)  2.)    การลบเมทริกซ์ การลบเมทริกซ์จะคล้ายๆกับการบวกเมทริกซ์เลย

อสมการ

อสมการ

จากบทความที่ผ่านมาได้พูดถึงเรื่องช่วงของจำนวนจริงไปแล้ว บทความนี้เราจะนำความรู้เกี่ยวกับช่วงของจำนวนจริงมาใช้ในการแก้อสมการเพื่อหาคำตอบกันนะคะ ถ้าน้องๆได้อ่านบทความนี้แล้วรับรองว่าพร้อมทำข้อสอบแน่นอนค่ะ

ระบบจำนวนจริง

ระบบจำนวนจริง

ระบบจำนวนจริง “ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ โครงสร้าง ระบบจำนวนจริง มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น   โครงสร้าง     จำนวนจริง จำนวนจริงคือจำนวนที่ประกอบไปด้วย

เพลงชาติไทย สัญลักษณ์ของความรักชาติที่ถูกถ่ายทอดผ่านบทเพลง

‘ประเทศไทยรวมเลือดเนื้อชาติเชื้อไทย’ เชื่อว่าพอขึ้นต้นด้วยประโยคนี้ จะต้องมีน้อง ๆ หลายคนอ่านเป็นทำนองแล้วร้องต่อในใจแน่นอนว่า ‘เป็นประชารัฐ ไผทของไทยทุกส่วน’ เพราะนี่คือ เพลงชาติไทย ที่เราได้ยินตอนแปดโมงเช้ากับหกโมงเย็นของทุกวันนั่นเองค่ะ บทเรียนในวันนี้เราจะมาเจาะลึกถึงความเป็นมา และความหมายของเพลงชาติไทยกันค่ะ มาดูพร้อมกันเลย   ประวัติความเป็นมาของ เพลงชาติไทย     ก่อนที่จะมีเพลงชาติไทย ประเทศไทยใช้เพลงสรรเสริญพระบารมีที่เป็นเพลงประจำองค์พระมหากษัตริย์ เป็นเพลงประจำชาติ จนถึงการเปลี่ยนแปลงการปกครองเมื่อวันที่ 24 มิถุนายน พ.ศ.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1