ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม จะเกี่ยวข้องกับมุมที่มีหน่วยเป็นองศา (degree) และมุมที่มัหน่วยเป็นเรเดียน (radian)

ในบทความนี้จะกล่าวถึงมุมทั้งหน่วยองศาและเรเดียน มุมฉาก การเปลี่ยนหน่วยของมุม สมบัติของฟังก์ชันตรีโกณมิติ และสามเหลี่ยมมุมฉาก

ก่อนที่จะเริ่มเข้าสู่เนื้อหา พี่อยากให้น้องๆได้รู้พื้นฐานเกี่ยวกับฟังก์ชันตรีโกณมิติเพื่อที่จะได้เข้าใจเนื้อหาในบทความนี้มากขึ้น

  • การวัดความยาวส่วนโค้ง
  • ค่าของฟังก์ชันไซน์และโคไซน์
  • ฟังก์ชันตรีโกณมิติอื่นๆ

หลังจากที่ไปทบทวนความรู้มาแล้วเรามาเริ่มเนื้อหาใหม่กันเลยค่ะ

หน่วยของมุม

1.) องศา (degree) คือหน่วยของมุมในระนาบ 2 มิติ โดยที่

1 มุมฉาก = 90°

1°            = 60′ (ลิปดา)

1′            = 60″ (ฟิลิปดา)

มุมฉากที่น้องๆคุ้นกัน ก็คือ สามเหลี่ยมมุมฉาก

2.) เรเดียน (radian) คือหน่วยวัดมุมบนระนาบ 2 มิติ

มุม 1 เรเดียน คือขนาดของมุมที่วัดจากจุดศูนย์กลางของวงกลมที่กางออกตามส่วนโค้ง ซึ่งความยาวส่วนโค้งมีความยาวเท่ากับรัศมีของวงกลมพอดี

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้น มุม θ = \frac{a}{r}

 

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้นถ้าเราหมุนรัศมีครบ 1 รอบ จะได้ว่า a=2\pi r นั่นคือ θ = 2\piเรเดียน

จากนั้นเรามาพิจารณามุมฉาก (90°) ซึ่ง a=\frac{2\pi r}{4}

ดังนั้น 90° = \frac{\pi}{2}    ⇒    180° = \pi

ตัวอย่างการเปลี่ยนหน่วยของมุม

  • 5\pi เรเดียน เปลี่ยนเป็นองศา

จาก \pi = 180° ดังนั้น 5\pi = 5(180) = 900°

  • \frac{4\pi}{3} เรเดียน เปลี่ยนเป็นองศา

จะได้  \frac{4\pi}{3} = \frac{4(180)}{3} = 240°

  • 780° เปลี่ยนเป็นเรเดียน

ใช้วิธีเทียบสัดส่วน คือ

180° = \pi

780° = \frac{780\pi }{180} = \frac{13\pi }{3}

  • -330° เปลี่ยนเป็นเรเดียน

จะได้ \frac{-330\pi }{180} = \frac{-11\pi }{6}

ฟังก์ชันตรีโกณมิติของมุม 180° ± A, 360±A และ (-A) เมื่อ 0 < A < 90°

sin(180° – A) = sinA                      cosec(180° – A) = cosecA

cos(180° – A) = -cosA                   sec(180° – A) = -secA

tan(180° – A) = -tanA                   cot(180° – A) = -cotA

————————————————————————————————

sin(180° + A) = -sinA                      cosec(180° + A) = -cosecA

cos(180° + A) = -cosA                   sec(180° + A) = -secA

tan(180° + A) = tanA                   cot(180° + A) = cotA

————————————————————————————————

sin(360° + A) = sinA                      cosec(360° + A) = cosecA

cos(360° + A) = cosA                   sec(360° + A) = secA

tan(360° + A) = tanA                   cot(360° + A) = cot

————————————————————————————————

sin(360° – A) = -sinA                      cosec(360° – A) = -cosecA

cos(360° – A) = cosA                      sec(360° – A) = secA

tan(360° – A) = -tanA                   cot(360° – A) = -cot
————————————————————————————————
sin(-A) = -sinA                             cosec(-A) = -cosecA

cos(-A) = cosA                             sec(-A) = secA

tan(-A) = -tanA                           cot(-A) = -cotA

ฟังก์ชันตรีโกณมิติของมุม ของรูปสามเหลี่ยมมุมฉาก

A, B และ C เป็นมุมของสามเหลี่ยม

ในรูปนี้จะพิจารณามุม A

a แทนความยาวด้านตรงข้ามมุม A ⇒ ข้าม

b แทนความยาวด้านประชิดมุม A ⇒ ชิด

c แทนความยาวด้านตรงข้ามมุมฉาก ⇒ ฉาก

จากรูปจะได้ว่า

sinA = ข้าม/ฉาก = \frac{a}{c}

cosA = ชิด/ฉาก = \frac{b}{c}

tanA = ข้าม/ชิด = \frac{a}{b}

 

ตัวอย่าง

ให้ cosθ = \inline \frac{-3}{5} และ \frac{\pi }{2} ≤ θ ≤ \pi

ขั้นแรกเราจะพิจารณาเงื่อนไขที่โจทย์ให้มา นั่นก็คือ \frac{\pi }{2} ≤ θ ≤ \pi

ซึ่งจากเงื่อนไขนี้สามารถบอกได้ว่าเรากำลังพิจารณาค่าของฟังก์ชันตรีโกณที่อยู่ใน ควอดรันต์ที่ 2

ดังนั้น sinθ, cosecθ มีค่าเป็นบวก tanθ, cotθ และ secθ มีค่าเป็นลบ

จาก cosθ = \inline \frac{-3}{5} = ชิด/ฉาก เราจะวาดรูปได้ดังนี้

หา a โดยใช้ทฤษฎีบทพีทาโกรัส

c² = a² + b²

25 = a² + 9

a² = 16

a = ±4

จาก a คือความยาว ดังนั้น a = 4

ดังนั้น sinθ = \inline \frac{4}{5}

tanθ = \inline -\frac{4}{3}

cotθ = \inline -\frac{3}{4}

secθ = \inline -\frac{5}{3}

cosecθ = \inline \frac{5}{4}

การหาขนาดของมุมจากรูปสามเหลี่ยมมุมฉาก

ถ้าเรามีรูปสามเหลี่ยมที่บอกความยาวด้านมา เราสามารถหามุมได้โดยใช้ข้อมูลเหล่านั้นช่วย

เช่น

1)

จากรูปจะเห็นว่าบอกความความยาวด้านชิดมุมA และด้านตรงข้ามมุมฉาก

นั่นคือ รู้ชิด รู้ฉาก  ดังนั้นเราจะหามุมจากฟังก์ชันcos

cosA = \inline \frac{\sqrt{3}}{\sqrt{6}} = \inline \frac{1}{\sqrt{2}} = \inline \frac{\sqrt{2}}{2}

ดังนั้น A = 45°

2)

จากรูป เรารู้ความยาวด้านชิดมุมA และด้านตรงข้ามมุมA

ดังนั้นจะหาโดยใช้ tanA = \inline \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{3}

ดังนั้น A = 60°

มุมอื่นๆที่ควรรู้

มุม A = 35 จะได้ sin35° = \inline \frac{3}{5} และ cos35° = \inline \frac{4}{5}

มุมA = 53 จะได้ sin53° = \inline \frac{4}{5} และ cos53° = \inline \frac{3}{5}

วิดีโอเพิ่มเติม

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว

โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว

ขั้นตอนของการแก้โจทย์ปัญหา บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย แต่ก่อนที่น้องๆจะเรียนเรื่องนี้อย่าลืมทบทวน การแก้สมการเชิงเส้นตัวแปรเดียว กันก่อนนะคะ ถ้าน้องๆพร้อมแล้วเรามาศึกษาขั้นตอนของการแก้โจทย์ปัญหาเกี่ยวกับสมการ ดังนี้               ขั้นที่ 1 วิเคราะห์โจทย์ว่ากำหนดอะไรให้บ้าง และให้หาอะไร               ขั้นที่ 2 กำหนดตัวแปรแทนสิ่งที่โจทย์ให้หาหรือแทนสิ่งที่เกี่ยวข้องกับสิ่งที่โจทย์ให้หา               ขั้นที่ 3 เขียนสมการตามเงื่อนไขของโจทย์               ขั้นที่

past tense

Past Tense ที่มี Time Expressions

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ Past Tense และ Time Expressions ในประโยคดังกล่าว ถ้าพร้อมแล้วเราไปเริ่มกันเลยครับ

เสียงพยัญชนะ

การออกเสียงพยัญชนะต้นคำและพยัญชนะท้ายคำที่ออกเสียงยากในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การออกเสียงพยัญชนะต่างๆ ที่ขึ้นชื่อว่าออกเสียง “ยาก” ในภาษาอังกฤษ จะมีตัวอะไรกันบ้างนั้นเราไปดูกันเลยครับ

จำนวนตรรกยะ

จำนวนตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนตรรกยะ และการเปลี่ยนเศษส่วนเป็นทศนิยมหรือทศนิยมเป็นเศษส่วน

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

การตั้งคําถามทางสถิติ

การตั้งคําถามทางสถิติ บทความนี้ได้รวบรวมความรู้เรื่อง การตั้งคําถามทางสถิติ ไว้อย่างละเอียด ก่อนอื่นน้องมาทำความเข้าใจกับความหมายของ “คำถามทางสถิติ” คำถามทางสถิติ  หมายถึง คำถามที่มีคำตอบหรือคาดว่าจะได้รับคำตอบมากกว่า 1 คำตอบ รวมถึงคำถามที่ต้องการคำตอบซึ่งได้มาจากการรวบรวมข้อมูลพื้นฐานบางอย่างแล้วนำมาจำแนก  คำนวณ หรือวิเคราะห์เพื่อใช้ตอบคำถามนั้น คำถามทางสถิติจะต้องประกอบด้วยองค์ประกอบสำคัญ 3 ส่วน ได้แก่ ระบุสิ่งที่ต้องการศึกษาได้ มีกลุ่มบุคคลหรือสิ่งที่จะเก็บรวบรวมข้อมูลที่หลากหลาย สามารถคาดการณ์ได้ว่าคำตอบที่จะเกิดขึ้นมีความแตกต่างกัน ตัวอย่างคำถามทางสถิติ คำถามต่อไปนี้เป็นคำถามทางสถิติ อัตราส่วนที่เหมาะสมในการผสมสีทาบ้าน แต่ยี่ห้อควรเป็นอย่างไร

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1