ดีเทอร์มิแนนต์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ดีเทอร์มิแนนต์

ดีเทอร์มิแนนต์ (Determinant) คือ ค่าของตัวเลขที่สอดคล้องกับเมทริกซ์จัตุรัส ถ้า A เป็นเมทริกซ์จัตุรัส จะเขียนแทนดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ \inline \left | A \right |

โดยทั่วไปการหาค่าดีเทอร์มิแนนต์ที่เจอในข้อสอบจะไม่เกินเมทริกซ์ 3×3 เพราะถ้ามากกว่า 3 แล้ว จะเริ่มมีความยุ่งยาก

**ค่าของดีเทอร์มิแนนต์จะเป็นจำนวนจริงและมีเพียงค่าเดียวเท่านั้นที่จะสอดคล้องกับเมทริกซ์จัตุรัส เช่น เมทริกซ์ B ก็จะมีค่าดีเทอร์มิแนนต์เพียงค่าเดียวเท่านั้น**

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 2×2

ดีเทอร์มิแนนต์

หลักการจำคือ คูณลง ลบ คูณขึ้น

เช่น

ดีเทอร์มิแนนต์

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 3×3

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ 3×3 จะซซับซ้อนกว่า 2×2 นิดหน่อย แต่ยังใช้หลักการเดิมคือ คูณลง ลบ คูณขึ้น และสิ่งที่เพิ่มมาก็คือ การเพิ่มจำนวนหลักเข้าไปอีก 2 หลัก ซึ่งหลักที่เพิ่มนั้นก็คือค่าของ 2 หลักแรกนั่นเอง

ดีเทอร์มิแนนต์

 

ตัวอย่างเมทริกซ์ขนาด 3×3

ดีเทอร์มิแนนต์

 

สมบัติเกี่ยวกับ ดีเทอร์มิแนนต์

ให้ A, B เป็นเมทริกซ์ขนาด n×n

1.) \inline \mathrm{det(A)=det(A^t)}  โดยที่ \inline \mathrm{A^t} คือ เมทริกซ์สลับเปลี่ยน

2.) ถ้า สมาชิกแถวใดแถวหนึ่ง (หรือหลักใดหลักหนึ่ง) เป็น 0 ทุกตัว จะได้ว่า \inline \mathrm{det(A)=0}

เช่น

ดีเทอร์มิแนนต์

3.) ถ้า B คือเมทริกซ์ที่เกิดจากการสลับแถว (หรือหลัก) ของ A เพียงคู่เดียว จะได้ว่า \inline \mathrm{det(B)=-det(A)}

เช่น

ดีเทอร์มิแนนต์

4.) ถ้า B เกิดจากการคูณค่าคงตัว c ในสมาชิกแถวใดแถวหนึ่ง (หลักใดหลักหนึ่ง) ของ A จะได้ว่า \inline \mathrm{det(B)=cdet(A)}

เช่น

5.) \inline \mathrm{det(AB)=det(A)det(B)}

6.) \inline \mathrm{det(I_n)=1}  และ  \mathrm{det(\underbar{0})=0}

7.) \mathrm{det(A^n)=(det(A))^n}

เช่น

8.)  A เป็นเมทริกซ์เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)=0}

9.) A เป็ยเมทริกซ์ไม่เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)\neq 0}

10.) ถ้า A เป็นเมทริกซ์ไม่เอกฐาน แล้วจะได้ว่า \inline \mathrm{det(A^{-1})=\frac{1}{det(A)}}

11.) ถ้า c เป็นค่าคงตัว จะได้ว่า \mathrm{det(cA)=c^ndet(A)}   (n คือมิติของเมทริกซ์ A)

เช่น

ดีเทอร์มิแนนต์

12.) สามเหลี่ยมล่าง และสามเหลี่ยมบน 

ถ้า สมาชิกที่อยู่ใต้เส้นทะแยงมุมหลัก (หรือบนเส้นทะแยงมุมหลัก) เป็น 0 ทุกตัว จะได้ว่า ค่าดีเทอร์มิแนนต์จะเท่ากับ ผลคูณของสมาชิกเส้นทะแยงมุมหลัก

เช่น

ดีเทอร์มิแนนต์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การเรียงคำคุณศัพท์ (Adjective Order)

น้องๆ น่าจะรู้จักหรือเคยได้ยิน “คำคุณศัพท์” หรือ Adjective ในภาษาอังกฤษกันมาบ้างแล้วใช่มั้ยครับ? ซึ่งหน้าที่ของคำเหล่านี้คือเพิ่มความหมายและบอกลักษณะของคำนามนั่นเอง วันนี้เราจะมาเรียนรู้กันว่าหากมี Adjective มากกว่า 1 คำมาขยายคำนาม เราจะเรียงลำดับมันอย่างไรดี ไปดูกันเลย!

ปก short answer questions

Short question and Short answer

  สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้ครูจะพาไปตะลุยตัวอย่างและวิธีการแต่งประโยคคำถาม ของเรื่อง “Short question and Short answer“ การถามตอบคำถามแบบสั้น หากพร้อมแล้วก็ไปลุยกันเลยจร้า   ความหมาย Short question and Sho rt answer คือการถามตอบแบบสั้นหรือส่วนใหญ่แล้วมักขึ้นต้นคำถามด้วยกริยาช่วย และได้คำตอบขนาดสั้น เช่น Yes, I

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล   แบบฝึกหัดการให้เหตุผล ประกอบไปด้วยการให้เหตุผลแบบอุปนัยและการให้เหตุผลแบบนิรนัย ซึ่งแบบฝึกหัดนี้จะช่วยให้น้องๆได้ฝึกฝนการทำโจทย์จนน้องๆเชี่ยวชาญและส่งผลให้น้องๆทำข้อสอบได้แบบไม่ผิดพลาด ถ้าเรารู้เฉยๆเราอาจจะทำข้อสอบได้แต่การที่เราฝึกทำโจทย์ด้วยจะทำให้เราทำข้อสอบได้แน่นอนค่ะ แบบฝึกหัดเพิ่มเติมและข้อสอบ O-Net ตัวอย่างต่อไปนี้เป็นข้อสอบ O-Net ของปีก่อนๆ   1.) พิจารณาการอ้างเหตุผลต่อไปนี้ ก. เหตุ 1. ถ้าฝนไม่ตกแล้วเดชาไปโรงเรียน   2. ฝนตก      ผล   

3 ขั้นตอนการเขียนโครงงานอย่างง่ายที่ไม่ว่าใครก็ทำได้

ในเมื่อมีการเขียนรายงานแล้วทำไมถึงยังต้องมีการเขียนโครงงาน? น้อง ๆ เคยสงสัยไหมคะว่า การเขียนโครงงาน นั้นไม่เหมือนกับรายงานทั่วไปอย่างไร มีองค์ประกอบและขั้นตอนการเขียนอย่างไร ถ้าอยากรู้แล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยนะคะ   โครงงานคืออะไร   โครงงานเป็นกิจกรรมที่เน้นกระบวนการโดยผู้เรียนจะเป็นผู้คิดค้น วางแผน ลงมือปฏิบัติตามแผนที่วางไว้ อาศัยเครื่องมือและวัสดุอุปกรณ์ในการปฏิบัติ เพื่อให้โครงงานสำเร็จภายใต้คำแนะนำ การกระตุ้นความคิด กระตุ้นการทำงานของครูผู้สอนหรือผู้เชี่ยวชาญ ตั้งแต่คิดสร้างโครงงาน ลงมือปฏิบัติ ไปจนถึงประเมินผล   ความสำคัญของโครงงาน    

พาราโบลา

พาราโบลา

พาราโบลา พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix) พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้ ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ   ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1