จำนวนสมาชิกของเซตจำกัด

จำนวนสมาชิกของเซตจำกัด เป็นเรื่องที่สามารถเอาไปใช้ในชีวิตประจำวันได้จริง และสิ่งที่น้องๆจะได้หลังจากอ่านบทความนี้คือ น้องๆจะสามารถทำโจทย์ปัญหาเกี่ยวกับจำนวนสมาชิกของเซตจำกัดได้ และอาจจะเอาไปประยุกต์ใช้ในชีวิตประจำวันได้ด้วย

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะใช้เนื้อหาเรื่องการดำเนินการของเซตด้วยเล็กน้อย ก่อนอื่นเรามารู้จักกับ สัญลักษณ์ จำนวนของสมาชิกก่อนนะคะ

ให้A เป็นเซตจำกัด เราจะใช้ n(A) แทนจำนวนสมาชิกของเซต A

เช่น A = {a,b,c,d} จะได้ n(A) = 4

B = {5,6,7,8,9,10} จะได้ n(B) = 6

จำนวนสมาชิกของเซตจำกัดสองเซต


กรณีที่ 1 ถ้า A  และ B เป็นเซตที่ไม่มีสมาชิกร่วมกัน

จะได้ว่า n(A∪B) = n(A)+n(B)

เช่น ให้ A = {1,2,3,4,5}, B = {6,7,8,9,10} จะได้ n(A) = 5, n(B) = 5

พิจารณา A∪B = {1,2,3,4,5,6,7,8,9,10} จะได้ n(A∪B) = 10

พิจารณา n(A)+n(B) = 5+5 = 10

ดังนั้นจะได้ว่า ถ้า A และ B ไม่มีสมาชิกร่วมกัน จะได้ n(A∪B) = n(A)+n(B)

กรณีที่ 2 ถ้า A และ B มีสมาชิกร่วมกัน

จะได้ว่า n(A∪B) = n(A)+n(B)-n(A∩B)

เช่น ให้ A ={1,2,3,4,5}, B = {4,5,6,7,8} จะได้ n(A) = 5 , n(B) = 5

พิจารณา A∪B = {1,2,3,4,5,5,6,7,8} จะได้ n(A∪B) = 8

พิจาณรา A∩B = {4,5} จะได้ n(A∩B) = 2

พิจารณา n(A)+n(B) = 5+5 = 10

พิจารณา n(A)+n(B)-n(A∩B) = 5+5-2 = 8

จะเห็นกว่า n(A∪B) ≠ n(A)+n(B) แต่ n(A∪B) = n(A)+n(B)-n(A∩B)

ดังนั้น ถ้า A,B มีสมาชิกร่วมกัน จะได้ว่า n(A∪B) = n(A)+n(B)-n(A∩B)

กรณีที่ 3 ถ้า A และ B เป็นเซตจำกัด จะได้ว่า n(A-B) = n(A) – n(A∩B)

จำนวนสมาชิกของเซตจำกัดสามเซต

ให้ A = {3,4,5,6} , B = {4,5,6,7}, C = {4,5,9}

ถ้าให้ A และ B เป็นเซตจำกัด

จะได้ว่า n(A-B-C) = n(A)-n(A∩B)-n(A∩C)+n(A∩B∩C)

สรุปสูตรการหาจำนวนสมาชิกของเซตจำกัด

ถ้า A, B และ C เป็นเซตจำกัด

1.) n(A∪B) = n(A)+n(B)-n(A∩B)

2.) n(A-B) = n(A) – n(A∩B)

3.) n(A∪B∪C) = n(A)+n(B)+n(C)-n(A∩B)-n(A∩C)-n(B∩C)+n(A∩B∩C)

4.) n(A-B-C) = n(A)-n(A∩B)-n(A∩C)+n(A∩B∩C)

 

ตัวอย่าง

1.) ถ้า A และ B มีจำนวนสมาชิกเท่ากัน A∪B มีสมาชิก 15 ตัว และ A∩B มีสมาชิก 5 ตัว จงหาจำนวนสมาชิกของ A-B และ B-A

วิธีทำ จากโจทย์ n(A∪B) = 15 และ n(A∩B) = 5

 จากสูตร n(A∪B) = n(A)+n(B)-n(A∩B)

จะได้ว่า 15 = n(A)+n(B)-5

บวก 5 เข้าทั้งสองข้างของสมการ จะได้

 20 = n(A)+n(B) 

จากที่เรารู้ว่า A และ B มีจำนวนสมาชิกเท่ากัน ทำให้ได้ว่า 

n(A) = n(B) ดังนั้น เราจะแทน n(A) = n(B) ในสมการ 20 = n(A)+n(B) 

จะได้ว่า 20 = n(A)+n(A)

  20 = 2n(A)

หารด้วย 2 ทั้งสมการ จะได้

n(A) = 10 ทำให้ได้ว่า n(B) = 10

แต่โจทย์อยากได้ n(A-B) และ n(B-A) 

จาก n(A-B) = n(A) – n(A∩B)

จะได้ว่า n(A-B) = 10-5 = 5

และ n(B-A) = n(B)-n(A∩B) = 10-5 = 5

ตอบ จำนวนสมาชิกของ A-B และ B-A เท่ากับ 5 

เราสามารถหาคำตอบโดยการใช้แผนภาพได้ ดังนี้

2.) จากผลสำรวจความชอบเกี่ยวกับวิชาคณิตศาสตร์ ภาษาไทย และอังกฤษของนักเรียนชั้นมัธยมศึกษาปีที่ 4 ทั้งหมด ผลเป็นดังนี้

ไม่ชอบคณิตศาสตร์ 70 คน

ไม่ชอบภาษาไทย 90 คน

ไม่ชอบอังกฤษ 40 คน

ไม่ชอบคณิตศาสตร์และไม่ชอบภาษาไทย 40 คน

ไม่ชอบคณิตศาสตร์และอังกฤษ 20 คน

ไม่ชอบภาษาไทยและอังกฤษ 15 คน

ไม่ชอบทั้งสามวิชา 10 คน

ชอบทั้งสามวิชาวิชา 0 คน

อยากทราบว่า มีนักเรียนชั้นมัธยมศึกษาปีที่ 4 ทั้งหมดกี่คน

วิธีทำ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Auxiliary Verb: can, can’t

การใช้ Auxiliary Verb: can, can’t  บทนำแสนแซ่บ สวัสดีครับพ่อแม่พี่น้องสุดปังทุกท่าน วันนี้เรามาคุยกันเรื่องของคำกริยาช่วยที่ทำให้เรารู้ว่าคนนั้น ๆ สิ่งนั้น หรืออันนั้นมีความสามารถในการทำอะไรได้บ้างกันดีกว่า  ในภาษาไทยเอง เวลาเราจะอธิบายว่าเรามีความสามารถอะไรเราก็มักจะพูดว่า “เรา… ทำได้” หรือ “เราสามารถ….ทำได้” โดยภาษาอังกฤษสุดที่รักของเราเองก็มีอะไรแบบนั้นเหมือนกัน โดยเค้าใช้คำว่า Can มาช่วย โดยเราจะเรียกคำกริยาช่วยเหลือนี้ว่า Auxiliary verb หรือ

การบวกและการลบเอกนาม

การบวกและการลบเอกนาม บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5 เอกนาม เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก ค่าคงตัว คือ ตัวเลข ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y เอกนาม ประกอบด้วย 2

กลอนสุภาพ แต่งอย่างไรให้ไพเราะ

กลอนสุภาพ เป็นคำประพันธ์ที่หลาย ๆ คนคงจะรู้จักกันดีเพราะพบเจอในวรรณคดีได้ง่าย ใช้กันอย่างแผ่หลาย บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนมาสวมบทนักกวี ฝึกแต่งกลอนสุภาพกันอย่างง่าย ๆ จะมีวิธีและรูปฉันทลักษณ์อย่างไร ไปดูกันเลยค่ะ   ความรู้ทั่วไปเที่ยวกับกลอนสุภาพ   กลอนสุภาพ หมายถึง กลอนเพลงยาว บางครั้งเรียก กลอนแปด กลอนตลาด กลอนสุภาพ เป็นกลอนประเภทหนึ่งที่เรียบเรียงเข้าเป็นคณะ ใช้ถ้อยคำและทำนองเรียบ ๆ

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ จัดรูปใหม่ ได้เป็น (อ่านว่าล็อก x ฐาน

M1 การใช้ Verb Be

การใช้ Verb Be

สวัสดีค่ะนักเรียนชั้นม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Verb Be กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! ความหมาย   Verb be ในที่นี้จะแปลว่า Verb to be นะคะ แปลว่า เป็น อยู่ คือ ซึ่งหลัง verb to

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1