จำนวนสมาชิกของเซตจำกัด

จำนวนสมาชิกของเซตจำกัด เป็นเรื่องที่สามารถเอาไปใช้ในชีวิตประจำวันได้จริง และสิ่งที่น้องๆจะได้หลังจากอ่านบทความนี้คือ น้องๆจะสามารถทำโจทย์ปัญหาเกี่ยวกับจำนวนสมาชิกของเซตจำกัดได้ และอาจจะเอาไปประยุกต์ใช้ในชีวิตประจำวันได้ด้วย

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะใช้เนื้อหาเรื่องการดำเนินการของเซตด้วยเล็กน้อย ก่อนอื่นเรามารู้จักกับ สัญลักษณ์ จำนวนของสมาชิกก่อนนะคะ

ให้A เป็นเซตจำกัด เราจะใช้ n(A) แทนจำนวนสมาชิกของเซต A

เช่น A = {a,b,c,d} จะได้ n(A) = 4

B = {5,6,7,8,9,10} จะได้ n(B) = 6

จำนวนสมาชิกของเซตจำกัดสองเซต


กรณีที่ 1 ถ้า A  และ B เป็นเซตที่ไม่มีสมาชิกร่วมกัน

จะได้ว่า n(A∪B) = n(A)+n(B)

เช่น ให้ A = {1,2,3,4,5}, B = {6,7,8,9,10} จะได้ n(A) = 5, n(B) = 5

พิจารณา A∪B = {1,2,3,4,5,6,7,8,9,10} จะได้ n(A∪B) = 10

พิจารณา n(A)+n(B) = 5+5 = 10

ดังนั้นจะได้ว่า ถ้า A และ B ไม่มีสมาชิกร่วมกัน จะได้ n(A∪B) = n(A)+n(B)

กรณีที่ 2 ถ้า A และ B มีสมาชิกร่วมกัน

จะได้ว่า n(A∪B) = n(A)+n(B)-n(A∩B)

เช่น ให้ A ={1,2,3,4,5}, B = {4,5,6,7,8} จะได้ n(A) = 5 , n(B) = 5

พิจารณา A∪B = {1,2,3,4,5,5,6,7,8} จะได้ n(A∪B) = 8

พิจาณรา A∩B = {4,5} จะได้ n(A∩B) = 2

พิจารณา n(A)+n(B) = 5+5 = 10

พิจารณา n(A)+n(B)-n(A∩B) = 5+5-2 = 8

จะเห็นกว่า n(A∪B) ≠ n(A)+n(B) แต่ n(A∪B) = n(A)+n(B)-n(A∩B)

ดังนั้น ถ้า A,B มีสมาชิกร่วมกัน จะได้ว่า n(A∪B) = n(A)+n(B)-n(A∩B)

กรณีที่ 3 ถ้า A และ B เป็นเซตจำกัด จะได้ว่า n(A-B) = n(A) – n(A∩B)

จำนวนสมาชิกของเซตจำกัดสามเซต

ให้ A = {3,4,5,6} , B = {4,5,6,7}, C = {4,5,9}

ถ้าให้ A และ B เป็นเซตจำกัด

จะได้ว่า n(A-B-C) = n(A)-n(A∩B)-n(A∩C)+n(A∩B∩C)

สรุปสูตรการหาจำนวนสมาชิกของเซตจำกัด

ถ้า A, B และ C เป็นเซตจำกัด

1.) n(A∪B) = n(A)+n(B)-n(A∩B)

2.) n(A-B) = n(A) – n(A∩B)

3.) n(A∪B∪C) = n(A)+n(B)+n(C)-n(A∩B)-n(A∩C)-n(B∩C)+n(A∩B∩C)

4.) n(A-B-C) = n(A)-n(A∩B)-n(A∩C)+n(A∩B∩C)

 

ตัวอย่าง

1.) ถ้า A และ B มีจำนวนสมาชิกเท่ากัน A∪B มีสมาชิก 15 ตัว และ A∩B มีสมาชิก 5 ตัว จงหาจำนวนสมาชิกของ A-B และ B-A

วิธีทำ จากโจทย์ n(A∪B) = 15 และ n(A∩B) = 5

 จากสูตร n(A∪B) = n(A)+n(B)-n(A∩B)

จะได้ว่า 15 = n(A)+n(B)-5

บวก 5 เข้าทั้งสองข้างของสมการ จะได้

 20 = n(A)+n(B) 

จากที่เรารู้ว่า A และ B มีจำนวนสมาชิกเท่ากัน ทำให้ได้ว่า 

n(A) = n(B) ดังนั้น เราจะแทน n(A) = n(B) ในสมการ 20 = n(A)+n(B) 

จะได้ว่า 20 = n(A)+n(A)

  20 = 2n(A)

หารด้วย 2 ทั้งสมการ จะได้

n(A) = 10 ทำให้ได้ว่า n(B) = 10

แต่โจทย์อยากได้ n(A-B) และ n(B-A) 

จาก n(A-B) = n(A) – n(A∩B)

จะได้ว่า n(A-B) = 10-5 = 5

และ n(B-A) = n(B)-n(A∩B) = 10-5 = 5

ตอบ จำนวนสมาชิกของ A-B และ B-A เท่ากับ 5 

เราสามารถหาคำตอบโดยการใช้แผนภาพได้ ดังนี้

2.) จากผลสำรวจความชอบเกี่ยวกับวิชาคณิตศาสตร์ ภาษาไทย และอังกฤษของนักเรียนชั้นมัธยมศึกษาปีที่ 4 ทั้งหมด ผลเป็นดังนี้

ไม่ชอบคณิตศาสตร์ 70 คน

ไม่ชอบภาษาไทย 90 คน

ไม่ชอบอังกฤษ 40 คน

ไม่ชอบคณิตศาสตร์และไม่ชอบภาษาไทย 40 คน

ไม่ชอบคณิตศาสตร์และอังกฤษ 20 คน

ไม่ชอบภาษาไทยและอังกฤษ 15 คน

ไม่ชอบทั้งสามวิชา 10 คน

ชอบทั้งสามวิชาวิชา 0 คน

อยากทราบว่า มีนักเรียนชั้นมัธยมศึกษาปีที่ 4 ทั้งหมดกี่คน

วิธีทำ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กาพย์ห่อโคลงประพาสธารทองแดง

กาพย์ห่อโคลงประพาสธารทองแดง ถอดคำประพันธ์และคุณค่าในเรื่อง

หลังจากได้เรียนรู้ประวัติความเป็นมากันไปแล้ว บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้การถอดคำประพันธ์ กาพย์ห่อโคลงประพาสธารทองแดง ว่ามีความหมายอย่างไรบ้าง ตัวบทที่ยกตัวอย่างมาในวันนี้จะเป็นเรื่องใด ถ้าพร้อมแล้วเราไปเรียนรู้วรรณคดีเรื่องนี้พร้อม ๆ กันเลยค่ะ   ถอดคำประพันธ์           หัวลิงหมากกลางลิง    ต้นลางลิงแลหูลิง ลิงไต่กระไดลิง         

เมทริกซ์

เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์ เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร ตัวอย่างการเขียนเมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก และจากเมทริกซ์ข้างต้นจะได้ว่า

ข้อสอบO-Net เรื่องจำนวนจริง

ข้อสอบO-Net ข้อสอบO-Net ในบทความนี้จะคัดเฉพาะเรื่องจำนวนจริงมาให้น้องๆทุกคนได้ดูว่าที่ผ่านมาแต่ละปีข้อสอบเรื่องจำนวนจริงออกแนวไหนบ้าง โดยบทความนี้พี่ได้นำข้อสอบย้อนหลังของปี 49 ถึงปี 52 มาให้น้องๆได้ดูพร้อมเฉลยอย่างละเอียด เมื่อน้องๆได้ศึกษาโจทย์ทั้งหมดและลองฝึกทำด้วยตัวเองแล้ว น้องๆจะสามารถทำข้อสอบทั้งของในโรงเรียนและข้อสอบO-Net ได้แน่นอนค่ะ ข้อสอบO-Net เรื่องจำนวนจริง ปี 49   1.   มีค่าเท่ากับข้อในต่อไปนี้     60      

มารยาทในการพูด

มารยาทในการพูดที่ดีมีอะไรบ้างที่เราควรรู้

บทนำ   สวัสดีน้อง ๆ ทุกคน กลับเข้ามาสู่เนื้อหาสาระดี ๆ อีกครั้ง โดยวันนี้จะเป็นเนื้อหาที่เกี่ยวกับมารยาทในการพูด และจะต่อจากเนื้อหาเมื่อครั้งที่แล้วอย่างเรื่องมารยาทในการฟัง ซึ่งถือเป็นบทเรียนที่มีประโยชน์มาก ๆ เมื่อเราต้องไปพูดต่อหน้าที่สาธารณะ หรือพูดคุยสนทนากับเพื่อน ๆ คุณครู พ่อแม่ของเรา เพื่อให้การสื่อสารมีประสิทธิภาพ เราก็ควรเรียนรู้มารยาทที่ดีในการพูดไปด้วย ถ้าน้อง ๆ ทุกคนพร้อมแล้วมาดูกันว่าวันนี้จะมีเนื้อหาอะไรมาฝากกันบ้าง     การพูด

การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้นำเสนอ การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก โดยที่น้องๆจะได้รู้จักกับ บทนิยามของเลขยกกำลัง ซึ่งจะทำให้น้องๆรู้จักเลขชี้กำลังและฐานของเลขยกกำลัง และสามารถหาค่าของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวกได้ ก่อนอื่นเรามาทำความรู้จักกับเลขยกกำลังผ่านนิยามของเลขยกกำลัง ดังต่อไปนี้ บทนิยามของเลขยกกำลัง บทนิยาม  ถ้า a แทนจำนวนใด ๆ และ n แทนจำนวนเต็มบวก “a ยกกำลัง n” เขียนแทนด้วย aⁿ  มีความหมายดังนี้ a

ศึกษาที่มาของ ขัตติยพันธกรณี บทประพันธ์ที่มาจากเรื่องจริงในอดีต

ขัตติยพันธกรณี เป็นพระราชนิพนธ์ในรัชกาลที่ 5 มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ น้อง ๆ สงสัยกันไหมคะว่าเกี่ยวกับเรื่องไหน เหตุใดพระองค์จึงต้องพระราชนิพนธ์วรรณคดีเรื่องนี้ขึ้นมา เราไปหาคำตอบถึงที่มา ความสำคัญ และเนื้อเรื่องกันเลยค่ะ รับรองว่านอกจากจะได้ความรู้เกี่ยวกับบทประพันธ์แล้ว บทเรียนในวันนี้ยังมีเกร็ดความรู้ทางประวัติศาสตร์ให้น้อง ๆ อีกด้วยค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ที่มาของ ขัตติยพันธกรณี     ขัตติยพันธกรณีมีความหมายถึงเหตุอันเป็นข้อผูกพันของกษัตริย์ เป็นพระราชหัตถเลขาของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวและตอบกลับโดยสมเด็จกรมพระยาดำรงราชานุภาพ มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ ช่วง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1