จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จำนวนจริงในรูปกรณฑ์

จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย \sqrt[n]{x} อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x

เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ a^{n} = x

เช่น

2 เป็นรากที่ 2 ของ 4 เพราะ 2²  = 4 นั่นคือ \sqrt{4} = 2  (รากที่สองของ 4 คือ 2 )

-2 เป็นรากที่ 2 ของ 4 เพราะ (-2)² = 4 นั่นคือ \sqrt{4} = -2 (รากที่สองของ 4 คือ -2)

ดังนั้น จะได้ว่า รากที่สองของ 4 คือ ±2 หรือเขียนอีกอย่างคือ \sqrt{4} = \pm 2 นั่นเอง

 

**รากที่ 2 เรานิยมใช้ \sqrt{x} แต่ถ้าเป็นรากที่ n เมื่อ n มากกว่า 2 เราจะใช้ \sqrt[n]{x} **

เช่น รากที่ 3 ของ x เขียนได้ดังนี้ \sqrt[3]{x}

สมบัติของ จำนวนจริงในรูปกรณฑ์

ให้ k, m, n เป็นจำนวนเต็มบวกที่มากกว่าหรือเท่ากับ 2

1.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

2.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

3.)  จำนวนจริงในรูปกรณฑ์  ; y ≠ 0

เช่น  จำนวนจริงในรูปกรณฑ์

 

4.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

5.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

**ถ้า n เป็นจำนวนเต็มบวกที่เป็นเลขคู่ ตัวที่อยู่ใน ราก หรือ √‾ ต้องเป็นจำนวนจริงที่ไม่เป็นลบ

แต่ถ้า n เป็นจำนวนเต็มบวกที่เป็นเลขคี่ ตัวที่อยู่ในราก จะเป็นจำนวนจริงใดๆ**

 

จำนวนจริงในรูปเลขยกกำลัง

จำนวนจริงในรูปเลขยกกำลัง จะเขียนอยู่ในรูป xª เมื่อ x เป็นจำนวนจริงใดๆ และ a เป็นจำนวนเต็มบวก

xª = x⋅x⋅x⋅…⋅x (a ครั้ง)ฃ

x เป็นเลขฐาน

a เป็นเลขชี้กำลัง

เช่น 5³  : 5 เป็นเลขฐาน และ 3 เป็นเลขชี้กำลัง เป็นต้น

สมบัติของเลขยกกำลัง

ให้ x, y เป็นจำนวนจริงใดๆ m, n เป็นจำนวนเต็มบวก

1.)  จำนวนจริงในรูปกรณฑ์  (เลขฐานเหมือนกัน เมื่อคูณกันสามารถนำเลขชี้กำลังมาบวกกันได้)

เช่น  2^5+2^7=2^{5+7}=2^{12}

 

2.)  (xy)^a = x^ay^a

เช่น  (xy)^2=x^2y^2

 

3.)  (x^m)^n = x^{mn}

เช่น  (x^2)^3=x^{2\times 3}=x^6

 

4.)  \frac{x^m}{x^n} = x^{m-n}

เช่น  \frac{x^5}{x^3}=x^{5-3}=x^2

 

5.) x^{m}=x^{n} ก็ต่อเมื่อ m = n

เช่น  2^{x} = 2^{4}  ดังนั้น  x = 4

 

ความสัมพันธ์ระหว่างจำนวนจริงที่มีเลขชี้กำลังกับจำนวนจริงในรูปกรณฑ์

 

ให้ m, n เป็นจำนวนเต็มบวก โดยที่ n มากกว่าหรือเท่ากับ 2 และให้ x เป็นจำนวนจริงที่ไม่เป็นลบ

จะได้ว่า

1.)  \sqrt[n]{x}=x^\frac{1}{n}

2.)  จำนวนจริงในรูปกรณฑ์

3.)   x^{\frac{m}{n}} =(x^m)^\frac{1}{n}=\sqrt[n]{x^m}

จากข้อ 2 และ 3 จะได้ว่า จำนวนจริงในรูปกรณฑ์

การหารากที่สองของจำนวนที่อยู่ในรูป x\pm 2\sqrt{y}

ให้ a, b เป็นจำนวนจริงบวกที่ a + b = x และ ab = y จะได้ว่า

1.) รากที่สองของ x+2\sqrt{y}  คือ  \pm (\sqrt{a}+\sqrt{b}) นั่นคือ \sqrt{x+2\sqrt{y}} = \pm (\sqrt{a} +\sqrt{b})

2.) รากที่สองของ x-2\sqrt{y}  คือ \pm (\sqrt{a}-\sqrt{b}) นั่นคือ \sqrt{x-2\sqrt{y}} = \pm (\sqrt{a} -\sqrt{b})

 

ตัวอย่างโจทย์เกี่ยวกับ จำนวนจริงในรูปกรณฑ์

 

1.) จงหาค่าของ \sqrt{12}+\sqrt{27}

จำนวนจริงในรูปกรณฑ์

2.) จงหาค่าของ \frac{2^{-3}+3^{-4}}{9^{-2}+8^{-1}}

จำนวนจริงในรูปกรณฑ์

3.) จงหารากที่สองของ 13+\sqrt{88}

การหารากที่สอง

4.) หาค่า x ที่ทำให้ (\sqrt{\frac{8}{125}})^{^4}=(\frac{16}{625})^{\frac{1}{x}}

จำนวนจริงในรูปเลขยกกำลัง

 

วีดิโอที่เกี่ยวข้องกับ จำนวนจริงในรูปกรณฑ์ และจำนวนจริงในรูปเลขยกกำลัง

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม

 ฟังก์ชันตรีโกณมิติของมุม ฟังก์ชันตรีโกณมิติของมุม จะเกี่ยวข้องกับมุมที่มีหน่วยเป็นองศา (degree) และมุมที่มัหน่วยเป็นเรเดียน (radian) ในบทความนี้จะกล่าวถึงมุมทั้งหน่วยองศาและเรเดียน มุมฉาก การเปลี่ยนหน่วยของมุม สมบัติของฟังก์ชันตรีโกณมิติ และสามเหลี่ยมมุมฉาก ก่อนที่จะเริ่มเข้าสู่เนื้อหา พี่อยากให้น้องๆได้รู้พื้นฐานเกี่ยวกับฟังก์ชันตรีโกณมิติเพื่อที่จะได้เข้าใจเนื้อหาในบทความนี้มากขึ้น การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ ฟังก์ชันตรีโกณมิติอื่นๆ หลังจากที่ไปทบทวนความรู้มาแล้วเรามาเริ่มเนื้อหาใหม่กันเลยค่ะ หน่วยของมุม 1.) องศา (degree) คือหน่วยของมุมในระนาบ 2 มิติ โดยที่

phrasal verbs

Phrasal Verbs: กริยาวลีในภาษาอังกฤษ

สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ two-word verbs และ three-word verb ในภาษาอังกฤษกันครับ จะเป็นอย่างไรเราไปดูกันเลย

หลักการคูณทศนิยม พร้อมตัวอย่างที่เข้าใจง่าย

บทความนี้จะพาน้อง ๆมาทำความเข้าใจกับหลักการคูณทศนิยมในแต่ละรูปแบบ พร้อมทั้งอธิบายหลักการและยกตัวอย่างวิธีคิดในแต่ละรูปแบบของการคูณทศนิยม ให้น้อง ๆสามารถนำไปปรับใช้กับการหาคำตอบจากแบบฝึกหัดในห้องเรียนได้จริง

comparison of adjectives

Comparison of Adjectives

สวัสดีน้องๆ ม. 1 ทุกคนนะครับ วันนี้เราจะมาทำความรู้จักกับเรื่องของ Comparison of Adjectives ซึ่งจะคืออะไรและเอาไปใช้อะไรได้บ้าง เราลองไปดูกันเลยครับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1