การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม เป็นการแยกตัวประกอบของสมการเพื่อให้ง่ายต่อการหาคำตอบของสมการที่จะต้องเรียนในเนื้อหาถัดไป ในบทความนี้จะพูดถึงพหุนามดีกรี 2 ตัวแปรเดียว

พหุนามดีกรี 2 คือ พหุนามที่มีเลขยกกำลังสูงสุด คือ 2

พหุนามดีกรี 2 ตัวแปรเดียว คือ พหุนามที่มีเลขยกกำลังสูงสุดคือ 2 และ มีตัวแปร 1 ตัว เขียนอยู่ในรูป ax² + bx + c โดยที่ a, b และ c เป็นค่าคงที่ และ a ≠ 0

ค่าคงที่ คือ ค่าที่ไม่เปลี่ยนแปลง พูดง่ายๆก็คือ เป็นตัวเลขตัวหนึ่ง

สาเหตุที่ a ≠ 0 เพราะ ถ้าเราสมมติให้ a เป็น 0 เราจะได้ว่า 0x² + bx + c = bx + c จะเห็นว่า เมื่อ a = 0 แล้ว ดีกรีสูงสุดก็คือ 1 มันจะกลายเป็น พหุนามดีกรี 1 ดังนั้น a เลยเป็น 0 ไม่ได้นั่นเองค่ะ

แต่ b และ c เป็น 0 ได้ เพราะ ดีกรียังคงเป็น 2 ก็ยังคงเป็นพหุนามดีกรี 2 อยู่

 

ตัวอย่าง พหุนามดีกรี 2

x² + 2x + 1 จะได้ว่า a = 1, b = 2, c = 1 และเลขยกกำลังสูงสุดคือ 2

2x² + 3x + 5 จะได้ว่า a = 2, b = 3, c = เลขยกกำลังสูงสุดคือ 2

 

เราลองสังเกต (x+2)(x+5) เราลองกระจายดู จะได้ว่า

การแยกตัวประกอบพหุนาม

ทำย้อนกลับ x² + 7x + 10 เราต้องคิดก่อนว่า ตัวเลข 2 ตัวใดที่คูณกันแล้วได้ 10 บวกกันแล้วได้ 7

10 = 1 × 10 = 2 × 5 เลขที่ คูณกันได้ 10 มี 2 กรณี คือ 1 กับ 10 และ 2 กับ 5

จากนั้นเรานำ เลขทั้ง 2 กรณี มาพิจารณาว่า กรณีไหนที่บวกกันแล้ว ได้เท่ากับ 7

1 + 10 = 11

2 + 5 = 7

ดังนั้น 2 กับ 5 คือตัวที่ บวกกันแล้วได้ 7 คูณกันแล้วได้ 10

ดังนั้น x² + 7x + 10 = (x+2)(x+5)

พหุนามในรูปกำลังสองสมบูรณ์และผลต่างกำลังสอง

การแยกตัวประกอบในรูปกำลังสองสมบูรณ์

แทน หน้า

แทน หลัง

(น + ล)² = น² + 2นล + ล²

(น – ล)² = น² – 2นล + ล²

ตัวอย่าง

1.) (x + 3)² = x² + 2(3)x + 3² = x² + 6x + 9

2.) (2x – 5) = (2x)² – 2(2)(5)x + 5² = 4x² – 20x +25

การแยกตัวประกอบในรูปผลต่างกำลังสอง

น² – ล² = (น – ล)(น + ล)

ตัวอย่าง

x² – 2² = (x – 2)(x + 2)

x² – 16 = (x – 4)(x + 4)

 

ตัวอย่าง การแยกตัวประกอบพหุนาม กรณี a = 1

กรณี a = 1 พหุนามจะอยู่ในรูป x² + bx + c โดยที่ b, c เป็นค่าคงที่ใดๆ เราจะหาจำนวน 2 จำนวนที่คูณกันแล้วเท่ากับ c และ บวกกันแล้วเท่ากับ b

1.) x² + 5x + 4

วิธีทำ จากโจทย์ได้ว่า a = 1, b = 5 และ c = 4

พิจารณาว่า จำนวน 2 จำนวนใด ที่คูณกันแล้วได้ 4

4 = 1 × 4 = 2 × 2

จากนั้นพิจารณาว่า กรณีไหนที่ บวกกันแล้วได้ 5

จะได้ว่า 1 + 4 = 5

ดังนั้น x² + 5x + 4 = (x + 1)(x + 4)

น้องๆสามารถตรวจคำตอบได้ โดยการคูณกระจาย ถ้ากระจายเสร็จแล้วได้ตรงกับโจทย์แสดงว่าแยกตัวประกอบถูกแล้วนั่นเอง

2.) x² – 2x +1

วิธีทำ จากโจทย์ ได้ว่า  a = 1, b = -2 และ c = 1

พิจารณาว่า จำนวนใดคูณกันแล้วได้เท่ากับ 1 และบวกกันได้เท่ากับ -2

1 = 1 × 1 = (-1) × (-1)

จากนั้น พิจารณาว่า กรณีใดที่บวกกันแล้วได้ -2

จะได้ว่า (-1) + (-1) = -2

ดังนั้น x² – 2x +1 = (x – 1)(x – 1)

 

3.) x² – 2x -35

วิธีทำ จากโจทย์ จะได้ว่า a = 1, b = -2 และ c = -35

พิจารณา จำนวนที่ คูณกันแล้วได้ -35 การที่คูณแล้วจะได้ -35 นั้น ตัวหนึ่งต้องเป็นจำนวนบวก และอีกตัวต้องเป็นจำนวนลบ

-35 = (-1) × 35 = 1 × (-35) = (-5) × 7 = 5 × (-7)  ได้ 4 กรณี

จากนั้นพิจารณากรณีทั้ง 4 ว่ากรณีไหนบวกกันแล้วได้เท่ากับ -2

จะได้ว่า (-7) + 5 = -2

ดังนั้น  x² – 2x -35 = (x – 7)(x + 2)

ตัวอย่าง การแยกตัวประกอบพหุนาม กรณี a ≠ 1

 

1.) 2x² + 5x + 2

วิธีทำ จากโจทย์จะได้ a = 2, b = 5, c = 2

การแยกตัวประกอบพหุนาม

2.) -x² – 4x +5

วิธีทำ a = -1, b = -4, c = 5

การแยกตัวประกอบพหุนาม

3.) 6x² + 7x + 2

วิธีทำ  a = 6, b = 7, c = 2

การแยกตัวประกอบพหุนาม

 

 วีดิโอการแยกตัวประกอบพุหนาม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก สัญลักษณ์แทนการบวก หรือ   เรียกว่า ซิกมา ( Sigma ) เราใช้เพื่อลดรูปการบวกกันของตัวเลข เนื่องจากว่าบางทีเป็นการบวกของจำนวนตัวเลข 100 พจน์ ถ้ามานั่งเขียนทีละตัวก็คงจะเยอะไป เราจึงจะใช้เครื่องหมายซิกมามาใช้เพื่อประหยัดเวลาในการเขียนนั่นเอง เช่น 1 + 2 + 3 + 4 +5  สามารถเขียนแทนด้วย

อิเหนา

อิเหนา จากนิทานปันหยีสู่วรรณคดีเลื่องชื่อของไทย

อิเหนา เป็นวรรณคดีที่ถูกเผยแพร่เข้ามาในไทยตั้งแต่สมัยกรุงศรีอยุธยา น้อง ๆ สงสัยไหมคะว่าจุดเริ่มต้นของนิทานของชาวชวานี้มีจุดเริ่มต้นในไทยอย่างไร เหตุใดถึงถูกประพันธ์ขึ้นเป็นบทละครให้ได้เล่นกันในราชสำนัก ถ้าน้อง ๆ พร้อมหาคำตอบแล้ว เราไปเรียนรู้ประวัติความเป็นมาและเรื่องย่อของอิเหนา ตอน ศึกกะหมังกุหนิงกันเลยค่ะ   ความเป็นมา   อิเหนามีความเป็นมาจากนิทานปันหยี หรือที่เรียกว่า อิเหนาปันหยีรัตปาตี ซึ่งเป็นนิทานที่เล่าแพร่หลายกันมากในชวา เชื่อกันว่าเป็นนิยายอิงประวัติศาสตร์ของชวา ในสมัยพุทธศตวรรษที่ 16 ปรุงแต่งมาจากพงศาวดารชวา อิทธิพลของเรื่องอิเหนาเข้ามาในประเทศไทยครั้งแรกในสมัยอยุธยา จากการที่เจ้าฟ้าหญิงกุณฑลและเจ้าฟ้าหญิงมงกุฎ

Comparison of Adjectives

การใช้ประโยค Comparative Adjectives

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน ยินดีต้อนรับทุกคนเข้าสู่บทเรียนเรื่องคำคุณศัพท์กันนะคะ วันนี้ครูได้ สรุปเรื่อง การใช้ ประโยค ประโยค Comparative Adjectives หรือ อีกชื่อหนึ่งคือ Comparison of Adjectives: การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ มาฝาก ไปลุยกันเลยจร้า   คำศัพท์สำคัญ: Comparative VS Comparison comparative (Adj.)

NokAcademy_ม5 การใช้ Modal Auxiliaries

Modal Auxiliaries ที่สำคัญ

สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modal Auxiliaries หรือ Modal verbs “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า รู้จักกับ Modal Auxiliaries   Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

เรียนรู้เทคนิคที่จะช่วยให้การเขียน ผังมโนภาพ เป็นเรื่องง่ายๆ

  ผังมโนภาพ เป็นเทคนิคที่พัฒนาขึ้นจากจดบันทึกความคิด ความรู้ ความเข้าใจ น้อง ๆ หลายคนก็คงจะเคยได้รับโจทย์จากคุณครูให้เขียนแผนผังมโนภาพเพื่อทดสอบความเข้าใจ หลายคนอาจจะคิดว่าเป็นเรื่องยากที่จะเขียนออกมา แต่ทราบไหมคะว่าที่จริงแล้วมีวิธีการเขียนที่ง่ายมากแถมยังมีประโยชน์อีกด้วย จะเป็นอย่างไรไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ความหมายของผังมโนภาพ   ผังมโนภาพเป็นแผนผังหรือแผนภาพที่แสดงความสัมพันธ์ของมโนทัศน์หรือความคิดรวบยอด ที่เริ่มจากความคิดหลัก ซึ่งทำหน้าที่เป็นชื่อเรื่อง แล้วแตกแขนงไปสู่ความคิดย่อย ๆ กระจายออกไปโดยรอบ ทำให้เกิดภาพเชื่อมโยงขององค์ความรู้เรื่องใดเรื่องหนึ่งในทุกแง่มุม   วิธีเขียนแผนผังมโนภาพ   ผังมโนภาพเป็นผังที่แสดงความสัมพันธ์ของสาระหรือความคิดต่าง

Profile-Have has got P.5

ทบทวนการใช้ ” Have/has got “

สวัสดีค่ะนักเรียนป. 5 ที่น่ารักทุกคน วันนี้เราจะไปทบทวนการใช้  Have/has got ในภาษาอังกฤษกันค่ะ ซึ่งก่อนอื่นต้อง มาทำความรู้จักกับ Verb to have กันก่อนซึ่ง เจ้า Verb to have ที่เราอาจจะคุ้นหูบ่อยๆ เช่น  Have a wonderful day. ขอให้มีวันที่ดีนะ เมื่อเราต้องการจบบทสนทนา

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1