การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม เป็นการแยกตัวประกอบของสมการเพื่อให้ง่ายต่อการหาคำตอบของสมการที่จะต้องเรียนในเนื้อหาถัดไป ในบทความนี้จะพูดถึงพหุนามดีกรี 2 ตัวแปรเดียว

พหุนามดีกรี 2 คือ พหุนามที่มีเลขยกกำลังสูงสุด คือ 2

พหุนามดีกรี 2 ตัวแปรเดียว คือ พหุนามที่มีเลขยกกำลังสูงสุดคือ 2 และ มีตัวแปร 1 ตัว เขียนอยู่ในรูป ax² + bx + c โดยที่ a, b และ c เป็นค่าคงที่ และ a ≠ 0

ค่าคงที่ คือ ค่าที่ไม่เปลี่ยนแปลง พูดง่ายๆก็คือ เป็นตัวเลขตัวหนึ่ง

สาเหตุที่ a ≠ 0 เพราะ ถ้าเราสมมติให้ a เป็น 0 เราจะได้ว่า 0x² + bx + c = bx + c จะเห็นว่า เมื่อ a = 0 แล้ว ดีกรีสูงสุดก็คือ 1 มันจะกลายเป็น พหุนามดีกรี 1 ดังนั้น a เลยเป็น 0 ไม่ได้นั่นเองค่ะ

แต่ b และ c เป็น 0 ได้ เพราะ ดีกรียังคงเป็น 2 ก็ยังคงเป็นพหุนามดีกรี 2 อยู่

 

ตัวอย่าง พหุนามดีกรี 2

x² + 2x + 1 จะได้ว่า a = 1, b = 2, c = 1 และเลขยกกำลังสูงสุดคือ 2

2x² + 3x + 5 จะได้ว่า a = 2, b = 3, c = เลขยกกำลังสูงสุดคือ 2

 

เราลองสังเกต (x+2)(x+5) เราลองกระจายดู จะได้ว่า

การแยกตัวประกอบพหุนาม

ทำย้อนกลับ x² + 7x + 10 เราต้องคิดก่อนว่า ตัวเลข 2 ตัวใดที่คูณกันแล้วได้ 10 บวกกันแล้วได้ 7

10 = 1 × 10 = 2 × 5 เลขที่ คูณกันได้ 10 มี 2 กรณี คือ 1 กับ 10 และ 2 กับ 5

จากนั้นเรานำ เลขทั้ง 2 กรณี มาพิจารณาว่า กรณีไหนที่บวกกันแล้ว ได้เท่ากับ 7

1 + 10 = 11

2 + 5 = 7

ดังนั้น 2 กับ 5 คือตัวที่ บวกกันแล้วได้ 7 คูณกันแล้วได้ 10

ดังนั้น x² + 7x + 10 = (x+2)(x+5)

พหุนามในรูปกำลังสองสมบูรณ์และผลต่างกำลังสอง

การแยกตัวประกอบในรูปกำลังสองสมบูรณ์

แทน หน้า

แทน หลัง

(น + ล)² = น² + 2นล + ล²

(น – ล)² = น² – 2นล + ล²

ตัวอย่าง

1.) (x + 3)² = x² + 2(3)x + 3² = x² + 6x + 9

2.) (2x – 5) = (2x)² – 2(2)(5)x + 5² = 4x² – 20x +25

การแยกตัวประกอบในรูปผลต่างกำลังสอง

น² – ล² = (น – ล)(น + ล)

ตัวอย่าง

x² – 2² = (x – 2)(x + 2)

x² – 16 = (x – 4)(x + 4)

 

ตัวอย่าง การแยกตัวประกอบพหุนาม กรณี a = 1

กรณี a = 1 พหุนามจะอยู่ในรูป x² + bx + c โดยที่ b, c เป็นค่าคงที่ใดๆ เราจะหาจำนวน 2 จำนวนที่คูณกันแล้วเท่ากับ c และ บวกกันแล้วเท่ากับ b

1.) x² + 5x + 4

วิธีทำ จากโจทย์ได้ว่า a = 1, b = 5 และ c = 4

พิจารณาว่า จำนวน 2 จำนวนใด ที่คูณกันแล้วได้ 4

4 = 1 × 4 = 2 × 2

จากนั้นพิจารณาว่า กรณีไหนที่ บวกกันแล้วได้ 5

จะได้ว่า 1 + 4 = 5

ดังนั้น x² + 5x + 4 = (x + 1)(x + 4)

น้องๆสามารถตรวจคำตอบได้ โดยการคูณกระจาย ถ้ากระจายเสร็จแล้วได้ตรงกับโจทย์แสดงว่าแยกตัวประกอบถูกแล้วนั่นเอง

2.) x² – 2x +1

วิธีทำ จากโจทย์ ได้ว่า  a = 1, b = -2 และ c = 1

พิจารณาว่า จำนวนใดคูณกันแล้วได้เท่ากับ 1 และบวกกันได้เท่ากับ -2

1 = 1 × 1 = (-1) × (-1)

จากนั้น พิจารณาว่า กรณีใดที่บวกกันแล้วได้ -2

จะได้ว่า (-1) + (-1) = -2

ดังนั้น x² – 2x +1 = (x – 1)(x – 1)

 

3.) x² – 2x -35

วิธีทำ จากโจทย์ จะได้ว่า a = 1, b = -2 และ c = -35

พิจารณา จำนวนที่ คูณกันแล้วได้ -35 การที่คูณแล้วจะได้ -35 นั้น ตัวหนึ่งต้องเป็นจำนวนบวก และอีกตัวต้องเป็นจำนวนลบ

-35 = (-1) × 35 = 1 × (-35) = (-5) × 7 = 5 × (-7)  ได้ 4 กรณี

จากนั้นพิจารณากรณีทั้ง 4 ว่ากรณีไหนบวกกันแล้วได้เท่ากับ -2

จะได้ว่า (-7) + 5 = -2

ดังนั้น  x² – 2x -35 = (x – 7)(x + 2)

ตัวอย่าง การแยกตัวประกอบพหุนาม กรณี a ≠ 1

 

1.) 2x² + 5x + 2

วิธีทำ จากโจทย์จะได้ a = 2, b = 5, c = 2

การแยกตัวประกอบพหุนาม

2.) -x² – 4x +5

วิธีทำ a = -1, b = -4, c = 5

การแยกตัวประกอบพหุนาม

3.) 6x² + 7x + 2

วิธีทำ  a = 6, b = 7, c = 2

การแยกตัวประกอบพหุนาม

 

 วีดิโอการแยกตัวประกอบพุหนาม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ม.3 สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สวัสดีค่ะนักเรียนชั้นม. 3 ที่น่ารักทุกคน วันนี้ครูจะพาไปตะลุย “สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ พร้อมทั้งเทคนิคการพูดตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า สำนวนการเสนอ   ในชีวิตประจำวันของเรานั้น ล้วนจะต้องเจอกลุ่มประโยคคำถามในเชิงชักชวน และการเสนอแนะที่ใช้เป็นรูปแบบคำถามนั้นถือเป็นการเสนอแนะชักชวนทางอ้อม ถ้าเทียบกับนิสัยคนไทยแล้ว ก็เพื่อแสดงถึงความเกรงใจ ไม่พูดมาตรงๆ เพื่อจุดประสงคืบางอย่าง ซึ่งเป็นนิสัยที่คนไทยส่วนใหญ่มีอยู่แล้ว ในภาษาอังกฤษการใช้ภาษาเหล่านี้จะทำให้การสนทนาดูเป็นธรรมชาติและคล่องมากขึ้น โดยที่บางครั้งผู้ถามนั้นหว่านล้อมผู้ฟังด้วยการ ชวนให้ทำ หรือแนะนำให้ทำนั่นเอง ประโยคคำถามที่ใช้มีดังนี้  

การใช้คำ

เรียนรู้และทำความเข้าใจการใช้คำในภาษาไทยอย่างง่ายๆ

การใช้คำในภาษาไทย มีความสำคัญมาก แม้ว่าน้อง ๆ จะคุ้นเคยกับภาษาไทยดีในระดับหนึ่งแล้ว แต่แน่ใจหรือเปล่าคะว่าใช้คำกันได้อย่างถูกต้องแล้ว เพราะการใช้คำให้ถูกก็ถือเป็นเรื่องสำคัญค่ะ ดังนั้นบทเรียนหลักภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องการใช้คำต่าง ๆ ได้ถูกต้องกันค่ะ จะมีอะไรบ้างไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การใช้คำ     การใช้คำกำกวม   คำกำกวม คือ การใช้คำหรือภาษาที่มีความหมายไม่ชัดเจน เป็นเหตุให้การสื่อสารผิดพลาด

คุณค่าในเรื่องพระอภัยมณี มีอะไรบ้าง?

หลังจากที่บทเรียนคราวที่แล้วเราได้เรียนเรื่องประวัติความเป็นมาของวรรณคดีเรื่องสุนทรภู่ไปแล้ว วันนี้เราจะพาน้อง ๆ ไปเรียนรู้ถึง คุณค่าในเรื่องพระอภัยมณี ว่ามีคุณค่าด้านใดบ้าง เพื่อที่น้อง ๆ จะได้รู้เหตุผลว่าทำไมวรรณคดีเรื่องนี้ถึงเป็นเรื่องที่โด่งที่สุดอีกเรื่องหนึ่งของสุนทรภู่ เป็นวรรณคดีที่ดังข้ามเวลาและอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   คุณค่าในเรื่องพระอภัยมณี     คุณค่าทางด้านวรรณศิลป์   พระอภัยมณีเป็นเรื่องมีรสทางวรรณคดีคือเสาวรจนีย์และสัลปังคพิสัย ดังนี้ เสาวรจนีย์ เป็นบทชมโฉมหรือความงาม พบในตอนที่พระอภัยชมความงามของนางเงือก     2.

causatives

Causatives: Have and Get Something Done

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้ไวยากรณ์เรื่อง Causatives หรือการใช้ Have/Get Something Done ที่น้องๆ บางคนอาจจะสงสัยว่าคืออะไร ลองไปดูกันเลยครับ

การอ้างเหตุผล

บทความนี้จะทำให้น้องๆเข้าใจหลักการอ้างเหตุผลมากขึ้นและสามารถตรวจสอบได้ว่า การอ้างเหตุผล สมเหตุสมผลหรือไม่

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1