การแก้อสมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐

หลักการแก้อสมการเชิงเส้นตัวแปรเดียว

ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้

  1. จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ)
  2. ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้
    • มากกว่า (>) เปลี่ยนเป็น น้อยกว่า (<)
    • น้อยกว่า (<) เปลี่ยนเป็น มากกว่า (>)
    • มากกว่าหรือเท่ากับ (≥) เปลี่ยนเป็น น้อยกว่าหรือเท่ากับ (≤)
    • น้อยกว่าหรือเท่ากับ (≤) เปลี่ยนเป็น มากกว่าหรือเท่ากับ (≥)
    • ไม่ท่ากับ (≠) สัญลักษณ์ไม่เปลี่ยน

จากหลักการแก้อสมการเชิงเส้นตัวแปรเดียว ที่ระบุว่า เมื่อนำจำนวนลบมา คูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้ามนั้น น้องๆมาสังเกตดูว่า ถ้านำจำนวนบวกมา คูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนมั้ย??

จงเติมคำตอบว่าอสมการเป็นจริงหรือเท็จ เมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงบวก

ข้อ อสมการ อสมการเป็นจริง

หรือเท็จ

ผลคูณ

อสมการเป็นจริง

หรือเท็จ

1

3 < 8

เป็นจริง

3 x 4 < 8 x 4

12 < 32

เป็นจริง
2 –4 ≤ –2

เป็นจริง

(–4) x 4  ≤ (–2) x 4

–16  ≤  –8

เป็นจริง

 

3

–5 < 1 เป็นจริง (–5) x 3 < 1 x 3

–15 < 3

เป็นจริง

 

4

4  ≥  3

เป็นจริง

4 x 5  ≥   3 x 5

20  ≥   15

เป็นจริง

5 3 > –1 เป็นจริง 3 x 12 > (–1) x 12

36 > –12

เป็นจริง

จะเห็นว่าเมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงบวก อสมการเป็นจริงทุกอสมการ นั่นคือ เมื่อคูณ หรือ หาร ทั้งสองข้างของอสมการด้วยจำนวนจริงบวก สัญลักษณ์ของอสมการจะไม่เปลี่ยน

ถ้าคูณทั้งสองข้างของอสมการด้วยจำนวนจริงลบ สัญลักษณ์ของอสมการจะเปลี่ยนหรือไม่

ข้อ

อสมการ อสมการเป็นจริง

หรือเท็จ

ผลคูณ อสมการเป็นจริง

หรือเท็จ

  6

3 < 5 เป็นจริง 3 x (–4) < 5 x (–4)

–12 < –20

เท็จ
  7 –4  ≤ –3

เป็นจริง

–4 x (–4)  ≤  –3 x (–4)

16  ≤  12

เท็จ

  8

–5 < 2 เป็นจริง –5 x (–3) < 2 x (–3)

15 < –6

เท็จ
  9 4  ≥  1 เป็นจริง 4 x (–5)  ≥  1 x (–5)

–20  ≥  –5

เท็จ

10 3 > –1 เป็นจริง 3 x (–12)  > –1 x (–12)

 –36 > 12

เท็จ

จะเห็นว่าเมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงลบ อสมการเป็นเท็จทุกอสมการ นั่นคือ เมื่อคูณ หรือ หาร ทั้งสองข้างของอสมการด้วยจำนวนจริงลบ สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม เพื่อทำให้อสมการเป็นจริง ซึ่งเป็นจริงตามหลักการข้อที่ 2

วิธีแก้อสมการเชิงเส้นตัวแปรเดียว

ลำดับต่อไป มาเรียนรู้วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว จากตัวอย่างต่อไปนี้

ตัวอย่างที่ 1  จงหาคำตอบของอสมการ  3x – 2 < 10

จาก   3x – 2 < 10

นำ 2 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   3x – 2 + 2 < 10 + 2

                      3x < 12

                 3x(¹⁄₃ ) < 12(¹⁄₃ )

                             x < 4

ดังนั้น คำตอบของอสมการ 3x – 2 < 10 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 4

ตัวอย่างที่ 2  จงหาคำตอบของสมการ   –4x + 10  ≤  30

วิธีทำ  จาก  –4x + 10  ≤  30

นำ –10 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   –4x + 10  + (–10)  ≤  30 + (–10)

                                       –4x  ≤  20

                              –4x(–¹⁄₄ )  ≥  20(–¹⁄₄)

                                         x   ≥  –5

ดังนั้น คำตอบของอสมการ –4x + 10  ≤  30 คือ จำนวนจริงทุกจำนวนที่มากกว่าหรือเท่ากับ –5

ตัวอย่างที่ 3  จงหาคำตอบของสมการ  2(x – 10) < 4

วิธีทำ  จาก 2(x – 10) < 4

นำ 2 คูณเข้าไปในวงเล็บ

 จะได้   2x – 20  < 4

           2x < 4 + 20 

                           2x < 24 

นำ ¹⁄ ₂ คูณทั้งสองข้างของอสมการ

                 2x (¹⁄ ₂ )  < 24 (¹⁄ ₂)

                            x  <  12

ดังนั้น คำตอบของอสมการ 2(x – 10) < 4 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 12

ตัวอย่างที่ 4  จงหาคำตอบของสมการ  28 – 4x > 20

วิธีทำ  จาก   28 – 4x > 20

นำ –28 บวกเข้าทั้งสองข้างของอสมการ

 จะได้  28 – 4x – 28 > 20 – 28

                                –4x > –8

นำ –¹⁄₄   คูณทั้งสองข้างของอสมการ

                              –4x (–¹⁄₄ )  < -8 (–¹⁄₄)

                                           x  <  2

ดังนั้น คำตอบของอสมการ 28 – 4x > 20 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 2

ตัวอย่างที่ 5  จงหาคำตอบของสมการ  x – 5  ≥  2x – 7

วิธีทำ  จาก  x – 5  ≥  2x – 7

นำ 7 บวกเข้าทั้งสองข้างของอสมการ

 จะได้ x – 5 + 7  ≥  2x – 7 + 7

                                    x + 2  ≥  2x

นำ x ลบทั้งสองข้างของอสมการ

                            x + 2 – x  ≥  2x – x

                                       2  ≥ x  หรือ  x  ≤  2  

ดังนั้น คำตอบของอสมการ x – 5  ≥  2x – 7 คือ จำนวนจริงทุกจำนวนที่น้อยกว่าหรือเท่ากับ 2

ตัวอย่างที่ 6  จงหาคำตอบของสมการ 3(x – 7) ≠ 12

วิธีทำ  จาก  3(x – 7) ≠ 12

จะได้    3x – 21 12

นำ 21 บวกทั้งสองข้างของสมการ

 จะได้ 3x – 21 + 21 ≠ 12 + 21

                                3x ≠ 33

                                  x 11

ดังนั้น คำตอบของอสมการ 3(x –7) 12 คือ จำนวนจริงทุกจำนวนยกเว้น 11

ตัวอย่างที่ 7  จงหาคำตอบของสมการ x – 12 ≠ 2x – 4

วิธีทำ  จาก x – 12 ≠ 2x – 4

นำ 4 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   x – 12 + 4 ≠ 2x – 4 + 4

                          x – 8  ≠  2x

นำ x ลบทั้งสองข้างของอสมการ

                    x – 8 – x  ≠ 2x – x

                               x  ≠   -8

ดังนั้น คำตอบของอสมการ x – 12 ≠ 2x – 4 คือ จำนวนจริงทุกจำนวนยกเว้น -8

แบบฝึกหัด พร้อมเฉลย

จงแสดงวิธีแก้อสมการต่อไปนี้

1) 5x – 10 ≠ 30
วิธีทำ  จาก  5x – 10 ≠ 30
5x – 10 + 10 ≠ 30 + 10
5x ≠ 40
5x (¹⁄ ₅ ) ≠ 40 (¹⁄ ₅ )
x ≠ 8
2) 2x – 17 -11
วิธีทำ  จาก  2x – 17  -11
2x – 17 + 17
 -11+17
2x
 6
                          x  3
3) 3x + 15 < 30
วิธีทำ  จาก  3x + 15 < 30
3x + 15 – 15 <
 30 – 15
3x <
 15
                          x < 5
4) 10x + 5 ≥ 25
วิธีทำ  จาก  10x +5 ≥ 25
10x + 5 – 5 ≥
 25 – 5
10x ≥
 20
                        x ≥ 2
5) 4x + 10 > 50
วิธีทำ  จาก  4x + 10 > 50
4x + 10 – 10 >
 50 – 10
4x >
 40
                          x > 10
6) 7x – 3 ≠ 4
วิธีทำ  จาก  7x – 3 ≠ 4
7x – 3 + 3 ≠ 4 + 3
7x ≠ 7
x ≠ 1
7) 3(x + 1) ≥ 15
วิธีทำ  จาก 3(x + 1) ≥ 15
                   x + 1 ≥ 5
              x + 1 – 1 ≥ 5 – 1
                        x ≥ 4
8) 2(x – 4) < 12
วิธีทำ  จาก  2(x – 4) < 12
                     x – 4 < 6
               x – 4 + 4 < 6 + 4
                          x < 10

เมื่อน้องๆเรียนรู้เรื่องการเแก้อสมการเชิงเส้นตัวแปรเดียว  จะทำให้น้องๆสามารถแก้อสมการได้อย่างถูกต้องและแม่นยำ สามารถนำความรู้ที่ได้จากการเรียนเรื่องสมการมาประยุกต์ใช้กับอสมการได้ เมื่อน้องๆ หาคำตอบได้แล้ว น้องๆจะต้องเขียนกราฟของคำตอบของสมการ ซึ่งเขียนในรูปของเส้นจำนวน อยู่ในบทความเรื่องกราฟของอสมการเชิงเส้นตัวแปรเดียว

วิดีโอ การแก้อสมการเชิงเส้นตัวแปรเดียว

        คลิปวิดีโอนี้ได้รวบรวม วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค ที่จะทำให้น้องๆมองวิชาคณิตศาสตร์เป็นเรื่องง่าย

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ช่วงของจำนวนจริง

ช่วงของจำนวนจริง ช่วงของจำนวนจริง เอาไว้บอกขอบเขตของตัวแปรตัวแปรหนึ่ง เช่น x เป็นตัวแปรที่ไม่ทราบค่า a, b เป็นค่าคงที่ใดๆ a < x < b หมายความว่า ค่าของ x อยู่ระหว่าง a ถึง b เป็นต้น ช่วงของจำนวนจริง ประกอบไปด้วย ช่วงเปิดและช่วงปิด

wh- question

Wh- Question ใน Past Simple และ Future Tense

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะเรียนรู้เกี่ยวกับการใช้ Wh- Question ในประโยคที่เป็น Past Simple และ Future Tense จะเป็นอย่างไรลองไปดูกันเลยครับ

การหารเศษส่วนและจำนวนคละ

เทคนิคการหารเศษส่วนและจำนวนคละ

บทความที่แล้วเราได้พูดถึงหลักการคูณเศษส่วนและจำนวนคละไปแล้ว บทความนี้จะเป็นเรื่องต่อยอดจากการคูณก็คือเรื่องการหารเศษส่วนและจำนวนคละ ถ้าใครอ่านบทความการคูณเศษส่วนและจำนวนคละเข้าใจแล้วรับรองว่าเรื่องนี้จะยิ่งง่ายมากกว่าเดิมแน่นอน เพราะต้องใช้เรื่องการคูณเศษส่วนและจำนวนคละในการคำนวณหาคำตอบเช่นกัน สิ่งที่บทความนี้จะมอบให้กับน้อง ๆก็คือขั้นตอนการแสดงวิธีทำที่เห็นภาพและเข้าใจง่ายเหมือนกันบทความที่แล้วมา

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ   ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

วิธีใช้คำราชาศัพท์ ใช้อย่างไรให้เหมาะสม

ราชาศัพท์ เป็นถ้อยคำที่ใช้พูดกับพระมหากษัตริย์และพระบรมวงศานุวงศ์ ข้าราชการชั้นผู้ใหญ่ พระภิกษุสงฆ์ รวมถึงคำสุภาพที่ใช้กับคนทั่วไป การใช้คำราชาศัพท์ เป็นเรื่องที่มีปัญหาอยู่มาก เพราะการใช้ที่ไม่ถูกต้อง บทเรียนที่เราจะได้เรียนรู้กันในวันนี้น้อง ๆ จะได้เรียนรู้เกี่ยวกับ วิธีใช้คำราชาศัพท์ สำหรับพระมหากษัตริย์และพระบรมวงศานุวงศ์ ทั้งคำนาม และคำสรรพนาม ว่าเราควรแทนตัวเองหรือพระองค์อย่างไรให้ถูกต้อง ถ้าอยากรู้แล้ว ไปดูพร้อมกันเลยค่ะ   ลักษณะการใช้คำราชาศัพท์   คำราชาศัพท์มีไว้ใช้สำหรับคนธรรมดาทั่วไปพูดกับผู้ที่มีศักดิ์สูงกว่าอย่าง กษัตริย์ พระราชินี และพระบรมวงศานุวงศ์

ม.1 หลักการใช้ Past Simple

หลักการใช้ Past Simple Tense

Hi guys! สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง หลักการใช้ Past Simple   ถ้าพร้อมแล้วก็ไปลุยกันโลด Past Simple Tense     หลักการใช้ง่ายๆ ใช้กับเหตุการณ์ หรือการกระทำที่เกิดขึ้นและจบลงในอดีต มักมีคำหรือกลุ่มคำของอดีตมากำกับ ตัวอย่างประโยคทั่วไปที่มักเจอบ่อยๆ   บอกเล่า I saw Jack yesterday.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1