การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

เรียนออนไลน์ คณิตศาสตร์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

 

เช่น  ให้ A = {1, 2, 3} , B = {6, 7, 8} และ r เป็นความสัมพันธ์จาก A ไป B โดยที่  r = {(x, y) ∈ A × B : 3x < y}

จากที่เรารู้ว่า คู่อับดับที่เป็นสมาชิกของ A × B

นั่นคือ สมาชิกตัวตัวหน้า (x) มาจาก A และสมาชิกตัวหลัง (y) มาจาก B นั่นเอง

พิจารณา x = 1 จะได้ว่า 3(1) = 3 พิจารณาว่า 3 น้อยกว่าตัวไหนใน B บ้าง

จะได้ว่า 3 < 6 , 3 < 7 และ 3 < 8 นั่นคือ x = 1 จะได้ y = 6, 7, 8

ดังนั้น  (1, 6), (1, 7), (1, 8) เป็นความสัมพันธ์ใน r 

พิจารณา x = 2 จะได้ว่า 3(2) = 6 พิจารณาว่า 6 น้อยกว่าตัวไหนใน B บ้าง

จะได้ว่า 6 < 7 และ 6 < 8 นั่นคือ x = 2 จะได้ y = 7, 8

ดังนั้น (2, 7), (2, 8) เป็นความสัมพันธ์ใน r 

พิจารณา x = 3 จะได้ว่า 3(3) = 9

จะเห็นว่าไม่มีสมาชิกตัวใดใน B ที่ มากกว่า 9 เลย

ดังนั้นสรุปได้เลยว่า r = {(1, 6), (1, 7), (1, 8), (2, 7), (2, 8)}

 

ตัวอย่างการตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

 

ให้ A = {0, 1, 2} , B = {1, 2, 3, 4} และ  r เป็นความสัมพันธ์จาก A ไป B

1.) r = {(x, y) ∈ A × B : x > 1 และ y = 2}

จงเขียนความสัมพันธ์ r ในรูปแจกแจงสมาชิก

วิธีทำ 

จาก (x, y) เป็นสมาชิกของ A × B ดังนั้น x ต้องเป็นสมาชิกใน A และ y เป้นสมาชิก ใน B

จาก x > 1 ได้ว่า x = 2 (พิจารณาจากสมาชิกในเซต A)

และ y = 2

ดังนั้น r = {(2, 2)}

 

2.) r = {(x, y) ∈ A × B : 2x = y}

วิธีทำ

พิจารณา x = 0 จะได้ว่า 2(0) = 0 ได้ว่า y = 0 ซึ่ง 0 ไม่เป็นสมาชิกใน B ดังนั้น ตัด x = 0 ทิ้งได้เลย เพราะ (0, 0) ∉ A × B

พิจารณา x = 1 จะได้ว่า  2(1) = 2 ได้ว่า y = 2 จะเห็นว่า ที่ x = 1 ได้ y = 2 และ y = 2 เป็นสมาชิกใน B ดังนั้นจะได้คู่อันดับ (1, 2)

พิจารณา x = 2 จะได้ว่า 2(2) = 4 ได้ว่า  y = 4 ซึ่ง 4 เป็นสมาชิกใน B ดังนั้นจะได้คู่อันดับ (2, 4)

ดังนั้น r = {(1, 2), (2, 4)} ซึ่งเมื่อสังเกตดูน้องๆจะเห็นว่าคู่อันดับที่ได้นั้นเป็นสมาชิกใน A × B

 

3.) r = {(x, y) ∈ A × B : y = x²}

วิธีทำ

พิจารณา x = 0 จะได้ว่า  0² = 0 นั่นคือ y = 0  ซึ่ง y = 0 ไม่เป็นสมาชิกใน B ดังนั้น ตัด x = 0 ทิ้งได้เลย เพราะ (0, 0) ∉ A × B

พิจารณา x = 1 จะได้ว่า 1² = 1 นั่นคือ y = 1 ซึ่ง y = 1 เป็นสมาชิกใน B ดังนั้น ได้คู่อันดับ (1, 1)

พิจารณา x = 2 จะได้ว่า 2² = 4 นั่นคือ y = 4 ซึ่ง เป็นสมาชิกใน B ดังนั้นจะได้ (2, 4)

ดังนั้น r = {(1, 1), (2, 4)} ซึ่ง  (1, 1), (2, 4) ∈ A × B

 

วิดีโอ การตรวจสอบคู่อันดับที่เป็นความสัมธ์

 

  

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ บทนิยาม ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า  f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ และ ใดๆใน A ถ้า  < 

สำนวนไทยสัตว์น้ำ

สำนวนไทยที่เกี่ยวกับสัตว์น้ำ เรียนรู้ความหมายและที่มา

สำนวนไทย เกี่ยวกับสัตว์น้ำ   สำนวนไทยที่เกี่ยวกับสัตว์น้ำ มีมากมายหลายสำนวน เชื่อว่าน้อง ๆ หลายคนก็คงจะเคยได้ยินผ่านหูกันมาบ้างแล้ว แต่รู้หรือไม่คะว่าทำไมสัตว์น้ำต่าง ๆ ถึงมาอยู่ในสำนวนไทยได้ และสำนวนเหล่านั้นมีที่มาอย่างไร ใช้ในโอกาสใดได้บ้าง วันนี้เรามาเรียนรู้ถึงความหมายและที่มาของสำนวนไทยที่เกี่ยวกับสัตว์น้ำกันค่ะ   ความหมายของสำนวน     สำนวน หมายถึง ถ้อยคำ การพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น ขึ้นอยู่กับเรื่องที่กล่าวถึง โดยมีชั้นเชิงของถ้อยคำชวนให้คิดหรือตีความ

บทพากย์เอราวัณ

บทพากย์เอราวัณ ที่มาของวรรณคดีพากย์โขนอันทรงคุณค่า

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้องรับเข้าสู่เนื้อหาวิชาภาษาไทยที่จะมาให้สาระความรู้ดี ๆ ซึ่งวันนี้เราจะมาเรียนรู้ความเป็นมาของวรรณคดีเรื่องหนึ่งที่มักจะใช้ในการแสดงโขน นั่นก็คือบทพากย์เอราวัณแน่นอนว่าน้อง ๆ ในระดับมัธยมต้นจะต้องได้เรียนเรื่องนี้ เพราะเป็นวรรณคดีอีกเรื่องที่แสดงถึงพระปรีชาสามารถของรัชกาลที่ 2 ในด้านกวีนิพนธ์จากการที่เลือกใช้ถ้อยคำภาษาที่สวยงามเพื่อมาบรรยายถึงลักษณะของช้างเอราวัณได้อย่างดี ดังนั้น ถ้าพร้อมแล้วมาดูกันว่าวันนี้เรามีเนื้อหาที่น่าสนใจอะไรมาฝากน้อง ๆ กันบ้างดีกว่า ประวัติความเป็นมา สำหรับวรรณคดี บทพากย์เอราวัณ เป็นอีกหนึ่งผลงานการพระราชนิพนธ์ในรัชสมัยของพระบาทสมเด็จพระพุทธเลิศหล้านภาลัย (รัชกาลที่ 2) ซึ่งถือเป็นบทที่นิยมนำไปใช้ในการแสดงโขน โดยได้เค้าโครงเรื่องมาจาก “รามายณะ”

ประโยคในภาษาไทย

ทริคสังเกต ประโยคในภาษาไทย รู้ไว้ไม่สับสน

  น้อง ๆ หลายคนคงจะเคยสับสนและมีข้อสงสัยเกี่ยวกับประโยคในภาษาไทยกันมาไม่มากก็น้อย ทำไมอยู่ดี ๆ เราถึงไม่เข้าใจประโยคภาษาไทยที่พูดกันอยู่ทุกวันไปได้นะ? แต่ไม่ต้องกังวลไปนะคะ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ กลับไปทบทวนเกี่ยวกับเรื่องประโยคอีกครั้ง พร้อมเรียนรู้เคล็ดลับการสังเกตประโยคง่าย ๆ จะเป็นอย่างไร ไปดูพร้อมกันเลยค่ะ   ความหมายของประโยค   ประโยค เป็นหน่วยทางภาษาที่เกิดจากการนำคำหลาย ๆ คำ หรือกลุ่มคำ มาเรียงต่อกันอย่างเป็นระบบ มีความสัมพันธ์กัน

การโต้วาที

โต้วาที และยอวาที แต่งต่างกันอย่างไร?

การพูดมีมากมายหลายประเภท แล้วแต่จุดประสงค์ของผู้พูดว่าต้องการจะสื่อสารออกมาในรูปแบบใด แต่จะมีอยู่ประเภทหนึ่งที่มีหัวข้อให้พูดและต้องแบ่งออกเป็นสองฝ่าย โดยไม่ได้มีเจตนาเพื่อมาทะเลาะกัน เพราะเรากำลังหมายถึงการพูดโต้วาทีและการยอวาที ที่เป็นการพูดแสดงความคิดเห็นในลักษะที่ต่างกัน แต่จะต่างกันอย่างไรบ้างนั้น เราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   การโต้วาที     การโต้วาที เป็นการแสดงความคิดเห็นโต้แย้งด้วยเหตุผลเพื่อให้ชนะอีกฝ่าย โดยจะแบ่งผู้พูดออกเป็น 2 ฝ่าย คือ ฝ่ายญัตติและฝ่ายคัดค้านญัตติ และมีกรรมการคอยตัดสินว่าจะให้ฝ่ายใดชนะ โดยแต่ละฝ่ายจะต้องมีข้อมูลเพื่อมาสนับสนุนการพูดของตัวเอง หักล้างแนวคิดของอีกฝ่ายและต้องมีปฏิภาณไหวพริบ   องค์ประกอบของการโต้วาที  

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง คือ การนำเสนอข้อมูลที่ได้มีการเก็บรวบรวมข้อมูลไว้โดยใช้รูปสี่เหลี่ยมมุมฉาก ซึ่งเเต่ละรูปมีความกว้างเท่ากัน เเละใช้ความสูงหรือความยาวเเสดงปริมาณของข้อมูล เเต่จุดเริ่มต้นจะต้องเริ่มในระดับเดียวกันเสมอ อาจอยู่ในเเนวตั้งหรือเเนวนอนก็ได้ การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่งเปรียบเทียบ คือ การนำเสนอข้อมูลโดยเปรียบเทียบข้อมูลตั้งเเต่ 2 ชุดขึ้นไปในแผนภูมิเดียวกัน โดยมีเเท่งสี่เหลี่ยมที่เเสดงข้อมูลชนิดเดียวกันอยู่ด้วยกันเป็นชุดๆ เเละมีสีหรือเเรเงาในเเท่งสี่เหลี่ยมต่างกัน เเละระบุไว้บนเเผนภูมิด้วยว่าสีหรือเเรเงานั้น ๆ เป็นข้อมูลของอะไร ตัวอย่างของแผนภูมิเเท่งเปรียบเทียบ ส่วนประกอบของเเผนภูมิแท่ง: 1. ชื่อแผนภูมิ 2. จำนวน 3.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1