กราฟของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง

เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์ r ได้ดังนี้

กราฟของความสัมพันธ์

 

การเขียนกราฟความสัมพันธ์แบบบอกเงื่อนไข

รูปแบบการเขียนแบบบอกเงื่อนไขจะเป็นเหมือนกับการเขียนเซตแบบบอกเงื่อนไข เช่น A = {x : x ∈ R} และ B = {y : y ∈ I^{+}} เป็นต้น เรามักจะใช้ในกรณีที่ไม่สามารถเขียนแจกแจงสมาชิกทั้งหมดได้ กรณีที่ไม่สามารถแจกแจงสมาชิกได้ทั้งหมด เช่น x เป็นจำนวนจริง จะเห็นได้ว่าจำนวนจริงนั้นมีเยอะมาก บอกไม่หมดแน่ๆ จึงต้องเขียนแบบบอกเงื่อนไขนั่นเอง

เรามาดูตัวอย่างการเขียนกราฟกันค่ะ

ให้ A = {x : x ∈ R} และ B = {y : y ∈ R}

กำหนด r ⊂ A × B และ r = {(x, y) ∈ A × B : y = x²}

ขั้นที่ 1 ให้ลองแทนค่าของจำนวนเต็มบวก x ลงในสมการ y = x²  ที่ต้องแทน x เป็นจำนวนเต็มบวก เพราะเงื่อนไขในเซต A นั่นเอง

แทน x = 0, 1, 2, 3, 4

x = 0 ; y = 0

x = 1 ; y = (1)² = 1

x = 2 ; y = (2)² = 4

x = 3 ; y = (3)² = 9

x = 4 ; y = (4)² = 16

ขั้นที่ 2 เมื่อเราแทนค่า และได้ค่า y มาแล้ว ให้เราเขียนคู่อันดับที่เราได้จากขั้นที่ 1

จะได้คู่อันดับ ดังนี้ (0, 0), (1, 1), (2, 4), (3, 9), (4, 16)

**คู่อันดับที่ได้นี้เป็นเพียงสมาชิกบางส่วนของ r นะคะ เนื่องจากสมาชิกของ r เยอะมาก เราเลยยกตัวอย่างมาบางส่วนเพื่อที่จะเอาไปเขียนกราฟ**

ขั้นที่ 3 นำคู่อันดับที่ได้จากขั้นที่ 2 มาเขียนกราฟ โดยแกนตั้งคือ y แกนนอนคือ x

วิธีการเขียนกราฟคือ นำคู่อันดับแต่ละคู่มามาเขียนบนกราฟ แล้วลากเส้นเชื่อมจุดแต่ละจุด

กราฟของความสัมพันธ์

กราฟข้างต้นเป็นการแทนค่า x ด้วยจำนวนจริงบางส่วน

ถ้าเราแทนค่า x ด้วยจำนวนจริงทั้งหมดจะได้กราฟ ดังนี้

กราฟของความสัมพันธ์

 

กราฟของความสัมพันธ์ในรูปแบบเชิงเส้น

เมื่อให้ x, y เป็นจำนวนจริงใดๆ และ y = ax + b ซึ่งเป็นสมาการเส้นตรง(สมาการเชิงเส้น)

ให้ r_1 = {(x, y) : y = x}

จะได้กราฟ r ดังรูป

น้องๆสามารถลองแทนจุดบางจุดและลองวาดกราฟดู จะได้กราฟตามรูปข้างบนเลยค่ะ

ถ้าให้ r_2 = {(x, y) : y = -x}

จะได้กราฟ ดังรูป

 

ถ้าให้ r_3 = {(x, y) : y = 2x + 1}

จะได้กราฟดังรูป

กราฟของความสัมพันธ์

 

กราฟของความสัมพันธ์ ในรูปแบบกำลังสอง

ให้ x, y เป็นจำนวนจริงใดๆ สมการ y = ax² + bx +c เป็นสมการกำลังสอง ซึ่งเป็นสมการพาราโบลาที่เราเคยเรียนมาตอนม.ต้นนั่นเอง

ให้ r_1 = {(x, y) : y = 2x²}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

จะเห็นว่ากราฟที่ได้เป็นรูปพาราโบลาหงาย มีจุดวกกลับที่จุด (0, 0)

ถ้าให้ r_2 = {(x, y) : x = y²}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

เห็นว่ากราฟที่ได้คือ พาราโบลาตะแคงขวา มีจุดวกกลับที่จุด (0, 0)

ถ้าให้ r_3 = {(x, y) : y = -x² + 2x + 5}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

จะได้กราฟพาราโบลาคว่ำ มีจุดวกกลับที่จุด (1, 6)

 

**น้องๆสามารถแทนค่า x เพื่อหาค่า y แล้วนำคู่อันดับที่ได้มาลองวาดกราฟดูจะได้กราฟตามรูปเลยนะคะ**

 

กราฟของความสัมพันธ์ ในรูปแบบค่าสัมบูรณ์

 

ให้ x, y เป็นจำนวนจริงใดๆ และ y =\left | x \right |

กำหนดให้ r = {(x, y) : y =\left | x-1 \right |}

จะได้กราฟ ดังรูป

 

จากกราฟที่น้องๆเห็นทั้งหมดนี้ น้องๆอาจจะไม่ต้องรู้ก็ได้ว่า สมการแบบนี้กราฟต้องเป็นแบบไหน ในบทนี้ อยากให้น้องๆได้ฝึกแทนจุดบนกราฟโดยการแก้สมการหาค่า x, y แล้วนำมาวาดบนกราฟ 

ข้อสำคัญคือ น้องๆจะลากเส้นเชื่อมจุดได้ต้องมั่นใจว่าทุกจุดที่เส้นกราฟผ่านอยู่ในเงื่อนไขที่กำหนดให้ ถ้าเซตที่กำหนดให้เป็นเซตจำกัดอาจจะไม่สามารถลากเส้นแบบนี้ได้ ดังรูปแรกในบทความนี้นั่นเองค่ะ

 

วิดีโอ กราฟของความสัมพันธ์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Adjective

คำคุณศัพท์และการเรียงคำคุณศัพท์

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับคำคุณศัพท์และการเรียงคำคุณศัพท์ในภาษาอังกฤษกัน ถ้าพร้อมแล้วไปลุยกันเลยครับ

ราชาศัพท์

ราชาศัพท์ คำใดบ้างที่เราควรรู้?

น้อง ๆ หลายคนคงจะเคยได้ยินคำราชาศัพท์มาบ้างเวลาที่เปิดโทรทัศน์ดูข่าวช่วงหัวค่ำ แต่เคยสงสัยกันบ้างไหมคะว่า ราชาศัพท์ ที่นักข่าวในโทรทัศน์พูดกันบ่อย ๆ มีความหมายว่าอะไรบ้าง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เกี่ยวกับคำราชาศัพท์ เพื่อที่เวลาน้อง ๆ ฟังข่าว จะได้เข้าใจได้ง่ายมากขึ้น เราไปเรียนรู้พร้อมกันเลยค่ะ   ราชาศัพท์     การแบ่งลำดับขั้นของบุคคลในการใช้คำราชาศัพท์ แบ่งออกได้เป็น 5 ระดับ ดังนี้

สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ สมบัติสมมาตร ถ้า a = b แล้ว b = a เมื่อ a และ

วงรี

วงรี

วงรี วงรี จะประกอบไปด้วย 1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า 2) จุดยอด 3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก 4) ความเยื้องศูนย์กลาง (eccentricity) วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด จากกราฟ สมการรูปแบบมาตรฐาน:    จุดยอด : (a, 0) และ (-a,

โคลงโลกนิติ ประวัติความเป็นมาและเรื่องย่อ

โคลงโลกนิติ เป็นคำโคลงที่ถูกแต่งไว้ตั้งแต่สมัยกรุงศรีอยุธยา ดูจากช่วงเวลาแล้ว น้อง ๆ หลายคนคงจะสงสัยว่าเหตุใดบทประพันธ์ที่มีมาตั้งแต่ยุคก่อนโน้น ยังถูกนำมาเป็นบทเรียนให้คนรุ่นหลังสมัยนี้ศึกษาอยู่ โคลงโลกนิติเป็นบทประพันธ์แบบใด ถึงได้รับการอนุรักษ์ไว้มาอย่างยาวนาน วันนี้เรามาเรียนรู้ถึงประวัติความเป็นมาและเรื่องย่อของโคลงโลกนิติกันค่ะ โคลงโลกนิติ ประวัติและความเป็นมา โคลงโลกนิติเป็นบทประพันธ์ที่มีมาตั้งแต่สมัยกรุงศรีอยุธยา ไม่ปรากฏนามผู้แต่งที่ชัดเจน เนื่องจากเป็นสุภาษิตเก่าที่ถูกนำมาร้อยเรียงเป็นคำโคลง ต่อมา เมื่อถึงสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่หัว ทรงปฏิสังขรณ์วัดพระเชตุพนวิมลมังคลาราม (วัดโพธ์) และประสงค์ให้มีการนำโคลงโลกนิติมาจารึกลงแผ่นศิลาติดไว้เป็นธรรมทาน เพื่อที่ประชาชนจะได้ศึกษาคติธรรมจากบทประพันธ์   ผู้แต่งโคลงโลกนิติ เดิมทีไม่มีปรากฏชื่อผู้แต่งที่ชัดเจนและไม่มีหลักฐานยืนว่าโคลงโลกนิติถูกแต่งขึ้นเมื่อไหร่ แต่นักวรรณคดีศึกษาคาดว่าโคลงโลกนิติแพร่หลายในสมัยกรุงศรีอยุธยา

งานอดิเรก (Hobbies) ในยุคปัจจุบัน

  ในปัจจุบันงานอดิเรก (Hobbies) นอกจากจะเป็นสิ่งที่ทำให้เราสนุกแล้วยังสามารถเพิ่มพูนทักษะใหม่ๆ  ให้เราได้อีกด้วย  หากมีใครก็ตามถามว่า what do you like to do in your free time? คุณชอบทำอะไรในเวลาว่าง ครูเชื่อว่านักเรียนจะต้องมีหลายคำตอบ เพราะปัจจุบันมีหลายสิ่งหลายอย่างให้ทำเยอะมาก แต่เหนือสิ่งอื่นใด งานอดิเรกนั้นต้องทำให้เราสนุกและมีความสุขกับการได้ทำมันแน่ๆ “Do what you love,

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1