กราฟของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง

เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์ r ได้ดังนี้

กราฟของความสัมพันธ์

 

การเขียนกราฟความสัมพันธ์แบบบอกเงื่อนไข

รูปแบบการเขียนแบบบอกเงื่อนไขจะเป็นเหมือนกับการเขียนเซตแบบบอกเงื่อนไข เช่น A = {x : x ∈ R} และ B = {y : y ∈ I^{+}} เป็นต้น เรามักจะใช้ในกรณีที่ไม่สามารถเขียนแจกแจงสมาชิกทั้งหมดได้ กรณีที่ไม่สามารถแจกแจงสมาชิกได้ทั้งหมด เช่น x เป็นจำนวนจริง จะเห็นได้ว่าจำนวนจริงนั้นมีเยอะมาก บอกไม่หมดแน่ๆ จึงต้องเขียนแบบบอกเงื่อนไขนั่นเอง

เรามาดูตัวอย่างการเขียนกราฟกันค่ะ

ให้ A = {x : x ∈ R} และ B = {y : y ∈ R}

กำหนด r ⊂ A × B และ r = {(x, y) ∈ A × B : y = x²}

ขั้นที่ 1 ให้ลองแทนค่าของจำนวนเต็มบวก x ลงในสมการ y = x²  ที่ต้องแทน x เป็นจำนวนเต็มบวก เพราะเงื่อนไขในเซต A นั่นเอง

แทน x = 0, 1, 2, 3, 4

x = 0 ; y = 0

x = 1 ; y = (1)² = 1

x = 2 ; y = (2)² = 4

x = 3 ; y = (3)² = 9

x = 4 ; y = (4)² = 16

ขั้นที่ 2 เมื่อเราแทนค่า และได้ค่า y มาแล้ว ให้เราเขียนคู่อันดับที่เราได้จากขั้นที่ 1

จะได้คู่อันดับ ดังนี้ (0, 0), (1, 1), (2, 4), (3, 9), (4, 16)

**คู่อันดับที่ได้นี้เป็นเพียงสมาชิกบางส่วนของ r นะคะ เนื่องจากสมาชิกของ r เยอะมาก เราเลยยกตัวอย่างมาบางส่วนเพื่อที่จะเอาไปเขียนกราฟ**

ขั้นที่ 3 นำคู่อันดับที่ได้จากขั้นที่ 2 มาเขียนกราฟ โดยแกนตั้งคือ y แกนนอนคือ x

วิธีการเขียนกราฟคือ นำคู่อันดับแต่ละคู่มามาเขียนบนกราฟ แล้วลากเส้นเชื่อมจุดแต่ละจุด

กราฟของความสัมพันธ์

กราฟข้างต้นเป็นการแทนค่า x ด้วยจำนวนจริงบางส่วน

ถ้าเราแทนค่า x ด้วยจำนวนจริงทั้งหมดจะได้กราฟ ดังนี้

กราฟของความสัมพันธ์

 

กราฟของความสัมพันธ์ในรูปแบบเชิงเส้น

เมื่อให้ x, y เป็นจำนวนจริงใดๆ และ y = ax + b ซึ่งเป็นสมาการเส้นตรง(สมาการเชิงเส้น)

ให้ r_1 = {(x, y) : y = x}

จะได้กราฟ r ดังรูป

น้องๆสามารถลองแทนจุดบางจุดและลองวาดกราฟดู จะได้กราฟตามรูปข้างบนเลยค่ะ

ถ้าให้ r_2 = {(x, y) : y = -x}

จะได้กราฟ ดังรูป

 

ถ้าให้ r_3 = {(x, y) : y = 2x + 1}

จะได้กราฟดังรูป

กราฟของความสัมพันธ์

 

กราฟของความสัมพันธ์ ในรูปแบบกำลังสอง

ให้ x, y เป็นจำนวนจริงใดๆ สมการ y = ax² + bx +c เป็นสมการกำลังสอง ซึ่งเป็นสมการพาราโบลาที่เราเคยเรียนมาตอนม.ต้นนั่นเอง

ให้ r_1 = {(x, y) : y = 2x²}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

จะเห็นว่ากราฟที่ได้เป็นรูปพาราโบลาหงาย มีจุดวกกลับที่จุด (0, 0)

ถ้าให้ r_2 = {(x, y) : x = y²}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

เห็นว่ากราฟที่ได้คือ พาราโบลาตะแคงขวา มีจุดวกกลับที่จุด (0, 0)

ถ้าให้ r_3 = {(x, y) : y = -x² + 2x + 5}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

จะได้กราฟพาราโบลาคว่ำ มีจุดวกกลับที่จุด (1, 6)

 

**น้องๆสามารถแทนค่า x เพื่อหาค่า y แล้วนำคู่อันดับที่ได้มาลองวาดกราฟดูจะได้กราฟตามรูปเลยนะคะ**

 

กราฟของความสัมพันธ์ ในรูปแบบค่าสัมบูรณ์

 

ให้ x, y เป็นจำนวนจริงใดๆ และ y =\left | x \right |

กำหนดให้ r = {(x, y) : y =\left | x-1 \right |}

จะได้กราฟ ดังรูป

 

จากกราฟที่น้องๆเห็นทั้งหมดนี้ น้องๆอาจจะไม่ต้องรู้ก็ได้ว่า สมการแบบนี้กราฟต้องเป็นแบบไหน ในบทนี้ อยากให้น้องๆได้ฝึกแทนจุดบนกราฟโดยการแก้สมการหาค่า x, y แล้วนำมาวาดบนกราฟ 

ข้อสำคัญคือ น้องๆจะลากเส้นเชื่อมจุดได้ต้องมั่นใจว่าทุกจุดที่เส้นกราฟผ่านอยู่ในเงื่อนไขที่กำหนดให้ ถ้าเซตที่กำหนดให้เป็นเซตจำกัดอาจจะไม่สามารถลากเส้นแบบนี้ได้ ดังรูปแรกในบทความนี้นั่นเองค่ะ

 

วิดีโอ กราฟของความสัมพันธ์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

แผนภูมิแท่ง และการเปรียบเทียบข้อมูล

บทความนี้จะพูดถึงการนำเสนอข้อมูลในรูปแบบของแผนภูมิแท่งไม่ว่าจะเป็นการเปรียบเทียบข้อมูล 2 จำนวน และ 3 จำนวน น้องๆจะสามารถนำข้อมูลที่สำรวจมาเขียนเป็นแผนภูมิแท่งได้และจะง่ายต่อการนำเสนอมากยิ่งขึ้น

โคลนติดล้อ บทความปลุกใจในรัชกาลที่ 6

เป็นที่รู้กันดีกว่าพระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ของเรานั้น ทรงโปรดงานด้านวรรณกรรมมาตั้งแต่ยังเยาว์ และเริ่มงานวรรณกรรมตั้งแต่ยังทรงศึกษาอยู่ที่ประเทศอังกฤษ ทำให้มีผลงานในพระราชนิพนธ์มากมายหลายเรื่อง และแตกต่างกันออกไป ที่ผ่านมาน้อง ๆ คงจะได้เรียนมาหลายเรื่องแล้ว บทเรียนในวันนี้ก็จะพาน้อง ๆ ไปรู้จักกับผลงานของพระองค์อีกเรื่องหนึ่ง แตกต่างจากเรื่องก่อน ๆ ที่เคยเรียนมาอย่างแน่นอน เพราะเรากำลังพูดถึงโคลนติดล้อ ผลงานในพระราชนิพนธ์ที่อยู่ในรูปแบบของบทความ จะมีที่มา มีเนื้อหาที่น่าสนใจอย่างไรบ้างนั้น เราไปติดตามกันเลยค่ะ   ที่มาของ โคลนติดล้อ

ศึกษาที่มาของ ขัตติยพันธกรณี บทประพันธ์ที่มาจากเรื่องจริงในอดีต

ขัตติยพันธกรณี เป็นพระราชนิพนธ์ในรัชกาลที่ 5 มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ น้อง ๆ สงสัยกันไหมคะว่าเกี่ยวกับเรื่องไหน เหตุใดพระองค์จึงต้องพระราชนิพนธ์วรรณคดีเรื่องนี้ขึ้นมา เราไปหาคำตอบถึงที่มา ความสำคัญ และเนื้อเรื่องกันเลยค่ะ รับรองว่านอกจากจะได้ความรู้เกี่ยวกับบทประพันธ์แล้ว บทเรียนในวันนี้ยังมีเกร็ดความรู้ทางประวัติศาสตร์ให้น้อง ๆ อีกด้วยค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ที่มาของ ขัตติยพันธกรณี     ขัตติยพันธกรณีมีความหมายถึงเหตุอันเป็นข้อผูกพันของกษัตริย์ เป็นพระราชหัตถเลขาของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวและตอบกลับโดยสมเด็จกรมพระยาดำรงราชานุภาพ มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ ช่วง

การเปรียบเทียบจำนวนเต็ม

การเปรียบเทียบจำนวนเต็ม

ทบทวนจำนวนเต็ม บทความนี้จะทำให้น้องๆ เข้าใจ การเปรียบเทียบจำนวนเต็ม ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย น้องๆรู้จัก จำนวนเต็ม กันแล้ว แต่หลายคนยังไม่สามาถเปรียบเทียบความมากน้อยของจำนวนเต็มเหล่านั้นได้ ซึ่งถ้าน้องๆ เคยเรียนเรื่องการเปรียบเทียบเศษส่วนและจำนวนคละมาแล้ว เรื่องนี้จะกลายเป็นเรื่องง่ายดาย ซึ่งได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ทบทวนเรื่องจำนวนเต็ม  เช่น                                                                                                     25 ,  9  , -5 , 5.5 ,

สมบัติการคูณจำนวนจริง

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

เรียนรู้สำนวนไทยที่เกี่ยวกับสัตว์

จากที่เราได้เรียนรู้ในเรื่องของสำนวนกันมามากแล้ว ไม่ว่าจะเป็นความหมาย ที่มา ลักษณะ ความสำคัญ หรือคุณค่า รวมไปถึงตัวอย่างสำนวนไทยน่ารู้ที่เราได้ยกมาแล้วอธิบายความหมาย แต่น้อง ๆ สังเกตไหมคะว่า สำนวนไทยมีหลายสำนวนเลยที่มักจะเกี่ยวข้องกับสัตว์ สำนวนไทยที่เกี่ยวกับสัตว์ ไม่ได้มีขึ้นเพื่อกล่าวถึงสัตว์ตรง ๆ แต่เป็นการนำสัตว์มาเปรียบเทียบกับคน บทเรียนในวันนี้ จะพาน้อง ๆ ไปเรียนรู้กันว่าสัตว์แต่ละชนิดแทนพฤติกรรมไหนของคน และจะมีสำนวนใดบ้างที่เราควรรู้ ถ้าพร้อมแล้ว ไปดูกันเลยค่ะ   สำนวนไทยที่เกี่ยวกับสัตว์  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1