ฟังก์ชันลอการิทึม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ y=a^{x} ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ x=a^{y} จัดรูปใหม่ ได้เป็น ฟังก์ชันลอการิทึม (อ่านว่าล็อก x ฐาน a)

 

บทนิยาม

logarithm คือฟังก์ชันที่อยู่ในรูป {(x, y) ∈ \mathbb{R}^+\times \mathbb{R} : ฟังก์ชันลอการิทึม} โดยที่ a เป็นจำนวนจริงที่มากกว่า 0 และ a ≠ 1

 

ตัวอย่าง 

x = 5^{y} จัดรูปเป็น ฟังก์ชันลอการิทึม อ่านว่า ล็อก x ฐาน 5

 

กราฟ

กรณี a > 1

ฟังก์ชันลอการิทึม

กรณี 0 < a < 1

ฟังก์ชันลอการิทึม

 

จากกราฟจะเห็นว่า

1.) เมื่อ a > 1 จะเป็นฟังก์ชันเพิ่ม

2.) เมื่อ 0 < a < 1 จะเป็นฟังก์ชันลด

3.) กราฟของทั้ง 2 กรณีจะไม่ตัดแกน y

4.) ค่า x จะเป็นบวกเสมอ แต่ค่า y เป็นได้ทั้งบวกและลบ

 

สมบัติ ฟังก์ชันลอการิทึม

ให้ a, M และ N เป็นจำนวนจริงบวกที่ a ≠ 1 และ k เป็นจำนวนจริง จะได้ว่า

1.) ฟังก์ชันลอการิทึม

(ล็อกผลคูณเท่ากับผลบวกของล็อก)

2.) ฟังก์ชันลอการิทึม

(ล็อกผลหารเท่ากับผลต่างของล็อก)

3.) ฟังก์ชันลอการิทึม

เช่น   log_{2}x^3=3log_{2}x

4.) log_{a}a=1

5.) ฟังก์ชันลอการิทึม

(ล็อก 1 เท่ากับ 0)

6.) ฟังก์ชันลอการิทึม  เมื่อ k ≠ 0

เช่น  log_{2^5}x=\frac{1}{5}log_{2}x

7.) log_{a}b=\frac{1}{log_{b}a}  เมื่อ b >0 และ b ≠ 1

เช่น  ฟังก์ชันลอการิทึม

8.) ฟังก์ชันลอการิทึม  เมื่อ N ≠ 1

เช่น   ฟังก์ชันลอการิทึม   (เลขฐานไม่จำเป็นต้องเป็นเลข 2 เป็นเลขอะไรก็ได้ที่มากกว่า 0 และไม่เท่ากับ 1 )

การหาค่าลอการึทึม

ลอการิทึมที่ใช้มากและค่อนข้างนิยมใช้ในการคำนวณ คือ ลอการิทึมสามัญ (common logarithm) ซึ่งก็คือลอการิทึมที่มีเลขฐานสิบ และโดยทั่วไปเราจะเขียนล็อกโดยไม่มีฐานกำกับ

เช่น log_{10}x= log (x)

จากสมบัติข้อที่ 3 และ 4 จะได้ว่า

log10 = 1

log100=log10^{2}=2log10=2(1)=2

log0.01=log\frac{1}{100}=log10^{-2}=-2log(10)=-2

ดังนั้น จะได้ว่า log10^n=nlog10=n  เมื่อ n เป็นจำนวนเต็มใดๆ

ดังนั้น ถ้า N เป็นจำนวนเต็มบวกใดๆ เราสามารถเขียนอยู่ในรูป N_0\times 10^n ได้เสมอ โดยที่ 0 ≤ N < 10

เช่น 3,400=3.4\times10^3 , 0.0029 = 2.9 \times 10^{-3}

 

ทีนี้เรามาพิจารณา

N=N_0\times 10^n เมื่อ 0 ≤ N < 10

จะได้ว่า

ฟังก์ชันลอการิทึม

 

เราจะเรียก logN_0  ว่า แมนทิสซาของ logN

และเรียก n ว่า แคแรกเทอริสติกของ  logN

 

บทนิยาม

  1. ถ้า log N = A จะเรียก N ว่า แอนติลอการิทึมของ log N
  2. ถ้า log N = A จะได้ว่า N = antilog A

 

ตัวอย่าง

ให้หาค่าแคแรกเทอริสติกของ log 56.2

ฟังก์ชันลอการิทึม

 

ลอการิทึมที่นิยมใช้และมีประโยชน์มากเมื่อเรียนคณิตศาสตร์ขั้นที่สูงขึ้น คือ ลอการิทึมฐาน e โดยที่ e คือสัญลักษณ์ค่าคงที่ ซึ่ง e ≈ 2.7182818 ซึ่งล็อกฐาน e เราจะเรียกอีกอย่างว่า ลอการิทึมธรรมชาติ มักจะเขียนอยู่ในรูป ln x (อ่านว่าล็อก x ฐาน e)

การเปลี่ยนฐานของลอการิทึม

ตัวอย่างการเปลี่ยนฐานของลอการิทึม

กำหนดให้ log_65=0.8982 จงหาค่า log_{36}5

 

น้องๆสามารถเข้าไปอ่านบทความ ฟังก์ชันเอกซ์โพเนนเชียล เพื่อจะได้เข้าใจกับฟังก์ชันลอการิทึมง่ายขึ้น

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

แนะนำอสมการเชิงเส้นตัวแปรเดียว

แนะนำอสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการ แนะนำอสมการเชิงเส้นตัวแปรเดียว ซึ่งอสมการ เป็นประโยคที่แสดงถึงการไม่เท่ากัน โดยมีวิธีการหาคำตอบคล้ายๆกับสมการ น้องๆสามารถศึกษาบทความเรื่องโจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว เพื่อศึกษาวิธีการแก้สมการและนำมาประยุกต์ใช้กับการแก้อสมการเพิ่มเติมได้ที่  ⇒⇒โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว⇐⇐ แนะนำอสมการเชิงเส้นตัวแปรเดียว        อสมการ (inequality) เป็นประโยคที่แสดงถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  <, >, ≤, ≥ หรือ ≠  แสดงความสัมพันธ์         อสมการเชิงเส้นตัวแปรเดียว

การนำเสนอข้อมูลในรูปแบบกราฟเส้น

ในบทคาวมนี้จะนำเสนอเนื้อของบทเรียนเรื่องกราฟเส้น นักเรียนจะสามารถเข้าในหลักการอ่านและการวิเคราะห์ข้อมูลจากกราฟเส้น รวมไปถึงสามารถมองความสัมพันธ์ของข้อมูลในแกนแนวตั้งและแนวนอนของกราฟเส้นได้อย่างถูกต้อง

NokAcademy_ ม6Passive Modals

มารู้จักกับ Passive Modals

สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals” ที่ใช้บ่อยพร้อม เทคนิคการจำและนำไปใช้ และทำแบบฝึกหัดท้ายบทเรียน กันค่า Let’s go! ไปลุยกันโลดเด้อ   Passive Modals คืออะไรเอ่ย   Passive Modals คือ กลุ่มของ Modal verbs ที่ใช้ในโครงสร้าง

ลบไม่ได้ช่วยให้ลืม เช่นเดียวกับการลบเศษส่วนและจำนวนคละ!

บทความที่แล้วเราได้กล่าวถึงการบวกเศษส่วนและจำนวนคละไปแล้ว บทต่อมาก็จะเป็นเรื่องของการลบเศษส่วนและจำนวนคละ ทั้งสองเรื่องนี้มีหลักการคล้ายกันต่างกันที่เครื่องหมายที่บ่งบอกว่าโจทย์ต้องการทราบอะไร ดังนั้นบทความนี้จะอธิบายถึงหลักการลบเศษส่วนและจำนวนคละอย่างละเอียดและยกตัวอย่างให้น้อง ๆเข้าใจอย่างเห็นภาพและสามารถนำไปปรับใช้กับแบบฝึกหัดเรื่องการลบเศษส่วนและจำนวนคละได้

ลิลิตตะเลงพ่าย

ถอดความหมายตัวบทเด่นใน ลิลิตตะเลงพ่าย

ลิลิตตะเลงพ่าย เป็นวรรณคดีเรื่องดังที่มีตัวบทเด่น ๆ มากมาย สำหรับการถอดคำประพันธ์ในวันนี้เราได้คัดเลือกบทเด่น ๆ มาให้น้อง ๆ ได้เรียนกันถึง 13 บทเลยทีเดียว แต่เพราะเนื้อหาที่สนุก ภาษาที่สละสลวย รับรองว่าน้อง ๆ จะไม่มีทางเบื่อวรรณคดีเรื่องนี้แน่นอน ถ้าพร้อมแล้วเราไปเรียนความหมายของแต่ละบทพร้อมกันเลยนะคะ ตัวบทเด่น ๆ ใน ลิลิตตะเลงพ่าย   บทที่ 1  

ประโยคปฏิเสธรูปแบบอดีต

สวัสดีค่ะนักเรียน ม.2 ที่น่ารักทุกคน วันนี้ครูจะพาไปทบทวนเรื่อง ประโยคปฏิเสธรูปแบบอดีต ซึ่งเมื่อเล่าถึงเวลาในอดีตส่วนใหญ่แล้วเรามักเจอคำว่า yesterday (เมื่อวานนี้), 1998 (ปี ค.ศ. ที่ผ่านมานานแล้ว), last month (เดือนที่แล้ว)  และกลุ่มคำอื่นๆ ที่กำกับเวลาในอดีต ซึ่งเราจะเจอ Past Time Expressions ในกลุ่ม Past Tenses หรือ อดีตกาล

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1