ปริมาตรพีระมิดและทรงกรวย

ในบทความนี้จะกล่าวความหมายและหลักการในการคิดคำนวณหาปริมาตรของพีระมิดและทรงกรวย
Picture of tucksaga
tucksaga
ปริมาตรพีระมิดและทรงกรวย

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

นักเรียนรู้จักการหาปริมาตรของปริซึมและทรงกระบอกมาแล้ว ในหัวข้อนี้เราจะต้องนำความรู้ดังกล่าวมาใช้ประกอบในการหาปริมาตรของพีระมิดและกรวย เพื่อให้ได้แนวคิดในการหาปริมาตรของพีระมิดและกรวยให้นักเรียนทำกิจกรรมต่อไปนี้ 

ปริมาตรพีระมิดและทรงกรวย

ในหัวข้อนี้เราจะต้องนำความรู้ดังกล่าวมาใช้ประกอบในการหาปริมาตรของพีระมิดและกรวย เพื่อให้ได้แนวคิดในการหาปริมาตรของพีระมิดและกรวยให้นักเรียนทำกิจกรรมต่อไปนี้

ปริมาตรพีระมิด

        1. ใช้กระดาษแข็งสร้างพีระมิดฐานเปิด ตามที่กำหนดให้ต่อไปนี้
พีระมิด
         2. สำหรับพีระมิดแต่ละรูปในข้อ 1 ให้สร้างปริซึมฐานเปิดหนึ่งข้างที่มีความสูงเท่ากับความสูงของพีระมิด และมีพื้นที่ฐานเท่ากับพื้นที่ฐานของพีระมิด
ปริมาตรของพีระมิด
        3. ใช้พีระมิดฐานสี่เหลี่ยมผืนผ้าที่สร้างไว้มาตวงทราย โดยใส่ทรายให้เต็มพีระมิดฐานสี่เหลี่ยมผืนผ้า แล้วเททรายจากพีระมิดใส่ลงในปริซึมที่มีพื้นที่ฐานเท่ากันและความสูงเท่ากัน
        4. หาว่าจะต้องเททรายจากพีระมิดที่มีทรายเต็มกี่ครั้ง จึงจะได้ทรายเต็มปริซึมพอดี
        5. ทำตามข้อ 3 และข้อ 4 ซ้ำอีกโดยเปลี่ยนเป็นพีระมิดฐานสามเหลี่ยมด้านเท่ากับปริซึมที่มีพื้นที่ฐานเท่ากันและความสูงเท่ากัน หรือใช้พีระมิดฐานสี่เหลี่ยมจัตุรัสกับปริซึมที่มีพื้นที่ฐานเท่ากันและความสูงเท่ากัน

จากการทำกิจกรรมข้างต้น เราจะพบว่า ต้องเททรายจากพีระมิดใส่ลงในปริซึมที่มีพื้นที่ฐานเท่ากันและความสูงเท่ากันจำนวนสามครั้ง จึงจะได้ทรายเต็มปริซึมพอดี เราจึงคาดการณ์ว่าปริมาตรของพีระมิดเป็นหนึ่งในสามของปริมาตรของปริซึมที่มีพื้นที่ฐานเท่ากันและความสูงเท่ากัน ซึ่งอาจแสดงความสัมพันธ์ด้วยรูปภาพได้ดังนี้
ปริมตรพีระมิด

ปริมาตรทรงกรวย

เราทราบมาแล้วว่า รูปหลายเหลี่ยมด้านเท่ามุมเท่าที่มีจำนวนด้านมาก ๆ จะมีปริมาตรของกรวยรูปร่างใกล้เคียงกับวงกลม ดังนั้นกรวยจึงมีลักษณะใกล้เคียงกับพีระมิดที่ฐานเป็นรูปหลายเหลี่ยมด้านเท่ามุมเท่าที่มีจำนวนด้านมาก ๆ
ทรงกรวย
เราได้เห็นความสัมพันธ์ของปริมาตรของพีระมิดกับปริซึมที่มีพื้นที่ฐานเท่ากันและความสูงเท่ากันมาแล้ว ปริมาตรของกรวยที่สัมพันธ์กับปริมาตรของทรงกระบอกในทำนองเดียวกัน กล่าวคือ
ปริมาตรทรงกรวย

เพื่อเป็นการตรวจสอบการหาปริมาตรของกรวยข้างต้น เราอาจทำการทดลองเททรายจากทรงกระบอกที่มีพื้นที่ฐานเท่ากันและความสูงเท่ากันกับของกรวย เราจะพบว่า เททรายลงในกรวยที่มีขนาดเท่ากันได้เต็ม 3 อันพอดี ซึ่งอาจแสดงความสัมพันธ์ด้วยรูปภาพได้ดังนี้
ปริมาตรทรงกรวย

คลิปวิดีโอเรื่องปริมาตรพีระมิดและทรงกรวย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์ ตัวผกผันของความสัมพันธ์ r คือความสัมพันธ์ใหม่ที่เกิดจากการสลับตำแหน่งของสมาชิกตัวหน้ากับสมาชิกตัวหลังของคู่อันดับทุกคู่ในความสัมพันธ์ r เขียนแทนด้วย   ซึ่ง = {(y, x) : (x, y ) ∈ r} เช่น r = {(1, 2), (3, 4), (5,

การอ่านบทร้อยกรอง

การอ่านบทร้อยกรอง กาพย์และโคลงอ่านอย่างไรให้ไพเราะ

น้อง ๆ คงจะรู้การคำประพันธ์อย่างกาพย์และโคลงกันอยู่แล้วใช่ไหมคะ เพราะวรรณคดีไทยหลาย ๆ เรื่องที่เราเรียนกันมา ก็ใช้กาพย์และโคลงแต่งกันเสียส่วนใหญ่ และหลังจากที่ได้เรียนลักษณะการแต่งกาพย์กับโคลงสี่สุภาพ ให้ไพเราะกันไปแล้ว จะแต่งอย่างเดียวโดยไม่อ่านให้ถูกต้องก็ไม่ได้ใช่ไหมล่ะคะ ดังนั้นบทเรียนวันนี้จะพาร้อง ๆ ไปเรียนรู้เรื่อง การอ่านบทร้อยกรอง กันบ้าง ว่ามีวิธีอ่านอย่างไรให้ถูกต้องและไพเราะ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การอ่านบทร้อยกรอง     การอ่านบทร้องกรอง ประเภทกาพย์

กราฟของความสัมพันธ์เชิงเส้น ปก

กราฟของความสัมพันธ์เชิงเส้น

บทความนี้จะเป็นการสอนวิธีการเขียน กราฟของความสัมพันธ์เชิงเส้น ซึ่งทำได้โดยการหาความสัมพันธ์ของจำนวนสองจำนวน เขียนให้อยู่ในรูปคู่อันดับ และเขียนกราฟแสดงความสัมพันธ์ข้างต้น ซึ่งน้องๆสามารถศึกษาการเขียนกราฟของความสัมพันธ์เชิงเส้นเพิ่มเติมได้ที่  ⇒⇒ กราฟของความสัมพันธ์เชิงเส้น ⇐⇐ คู่อันดับ กราฟของความสัมพันธ์เชิงเส้น เขียนแสดงความเกี่ยวข้องของปริมาณสองปริมาณที่กำหนดให้ โดยความสัมพันธ์ระหว่างปริมาณสองปริมาณที่พบในชีวิตประจำวัน เช่น ปริมาณของน้ำประปาที่ใช้กับค่าน้ำ ปริมาณเวลาในการใช้โทรศัพท์กับค่าโทรศัพท์ ระยะทางที่โดยสารรถประจำทางปรับอากาศกับค่าโดยสาร ปริมาณของกระแสไฟฟ้ากับค่าไฟฟ้า เป็นต้น เราสามารถเขียนแสดงความสัมพันธ์เหล่านี้ในรูปตาราง แผนภาพ คู่อันดับ รวมทั้งแสดงในรูปของกราฟได้ ซึ่งในหัวข้อนี้ เราจะทำความรู้จักกับคู่อันดับกันก่อนนะคะ

การเปลี่ยนแปลงของประโยค

การเปลี่ยนแปลงของประโยค ศึกษาธรรมชาติของภาษาที่ยังไม่ตาย

ภาษาเป็นกลไกสำคัญที่จะต้องเปลี่ยนแปลงควบคู่ไปกับสังคมมนุษย์ คำและประโยคในทุกภาษาอาจเปลี่ยนแปลงหรือหายไปพร้อมกับความเจริญและเสื่อมของสังคมตามยุคสมัย ภาษาที่ไม่มีการเปลี่ยนแปลงจะถูกนับเป็นภาษาที่ตายแล้ว ภาษาไทยเป็นอีกภาษาหนึ่งที่ยังคงมีความเปลี่ยนแปลงอยู่เสมอ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้เรื่อง การเปลี่ยนแปลงของประโยค หนึ่งในเรื่องราวที่น่าสนใจของเรื่องการเปลี่ยนแปลงทางภาษา จะมีอะไรบ้างนั้น เราไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การเปลี่ยนแปลงทางภาษา     ปัจจัยที่ทำให้เกิดการเปลี่ยนแปลงทางภาษา   1. เกิดจากปัจจัยทางสังคม   2. ลักษณะการออกเสียงของผู้พูด ในบางครั้งผู้พูดจะไม่สามารถออกเสียงคำได้อย่างถูกต้องทุกคำ

ภาษาถิ่นใต้

ภาษาถิ่นใต้ มรดกทางวัฒณธรรมที่ควรค่าแก่การศึกษา

ภาษาเป็นส่วนหนึ่งของวัฒนธรรม โดยสิ่งที่สะท้อนให้เห็นถึงวัฒนธรรมผ่านภาษามากที่สุด ก็คือ การมีอยู่ของภาษาถิ่น ซึ่งเป็นภาษาที่ใช้พูดติดต่อสื่อสารตามท้องถิ่นต่าง ๆ เพื่อให้คนในพื้นที่เข้าใจกัน ประเทศไทยมีทั้งหมด 6 ภาค ภาษาถิ่นที่เด่นชัดที่สุดจะแบ่งออกเป็นภาษาถิ่นภาคกลางซึ่งครอบคลุมไปถึงภาคตะวันตะวันตก อาจมีแตกต่างบ้างในเรื่องของคำศัพท์บางคำและสำเนียง ภาษาถิ่นเหนือและภาษาถิ่นอีสาน ที่ได้รับอิทธิพลจากประเทศเพื่อนบ้าน และด้วยภูมิภาคที่อยู่ใกล้กันทำให้บางคำก็ใช้ด้วยกัน และสุดท้าย ภาษาถิ่นใต้ ที่ค่อนข้างจะแตกต่างกับภาษาถิ่นอื่น ๆ แต่จะมีลักษณะ และมีคำศัพท์น่ารู้อะไรบ้างนั้น เราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ภาษาถิ่นใต้  

อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย ซึ่งก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง อัตราส่วนที่เท่ากัน โดยการที่จะหาอัตราส่วนของจำนวนหลายๆจำนวนหรือเรียกอีกอย่างว่า อัตราส่วนต่อเนื่อง ได้นั้น น้องๆ จำเป็นต้องหา ค.ร.น. ของตัวร่วม ดังนั้นเรามาทบทวนวิธีการหา ค.ร.น. กันก่อนนะคะ จงหา ค.ร.น. ของ 3, 6 และ 12 3) 3     

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1