ฟังก์ชันเพิ่มและฟังก์ชันลด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ

บทนิยาม

ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า

 f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) < f(x_2)

f เป็นฟังก์ชันลดบนเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) > f(x_2)

 

อธิบายนิยาม

f เป็นฟังก์ชันเพิ่ม เมื่อค่า x เพิ่มขึ้น ค่า y เพิ่มขึ้น

f เป็นฟังก์ชันลด เมื่อค่า x เพิ่มขึ้น แต่ค่า y ลดลง

เมื่อ เราหยิบ x ใดๆ มาสองตัว สมมติให้เป็น 1 และ 2 และสมมติให้ f(1) = 2 , f(2) = 4 จะเห็นว่า f(1) < f(2) เราจะสรุปว่า f เป็นฟังก์ชันเพิ่มบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

ถ้าสมมติให้ f(1) = 5 , f(2) = 3 จะเห็นว่า f(1) > f(2) เราจะสรุปว่า f เป็นฟังก์ชันลดบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

วิธีการตรวจสอบฟังก์ชันเพิ่มและฟังก์ชันลด

ตรวจสอบโดยใช้นิยาม

f(x) = 4x – 3

จะตรวจสอบว่า f เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R} โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

 

g(x) = -2x + 5

จะตรวจสอบว่า g เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}^+ (หรือ (0, ∞))

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R}^+ โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

สาเหตุที่ต้องคูณหรือบวกด้วยจำนวนจริงบางตัว เพราะว่าเราอยากได้รูปแบบของ f(x) และ g(x) เนื่องจากเราไม่สามารถเริ่มพิจารณาตั้งแต่สมการที่เต็มรูปแบบได้ เราจึงต้องค่อยๆเริ่มจากสิ่งที่เรามี นั่นก็คือ x_1x_2 แล้วค่อยบวกหรือคูณด้วยจำนวนจริงสักตัว เพื่อให้ได้รูปแบบของสมการตามที่โจทย์กำหนดมา

 

ตรวจสอบโดยพิจารณาจากกราฟ

f(x) = x² + 2x เป็นฟังก์ชันเพิ่มหรือลดบน (-∞, 0) และเป็นฟังก์ชันเพิ่มหรือลดบนช่วง (0, ∞)

จาก f(x) = x² + 2 เป็นกราฟของพาราโบลาหงายที่มีจุดวกกลับที่จุด (0, 2)

วาดกราฟได้ดังนี้

ฟังก์ชันเพิ่มและฟังก์ชันลด

จะเห็นว่าเมื่อเราแบ่งกราฟเป็นสองช่วง คือ (-∞, 0) และ (0, ∞)

พิจารณา (-∞, 0) จะเห็นว่า ค่าของ y นั้นลดลงในขณะที่ค่า x เพิ่มขึ้น ดังนั้น f เป็นฟังก์ชันลดบนช่วง (-∞, 0)

พิจารณา (0, ∞) จะเห็นว่าค่าของ y เพิ่มขึ้นและค่า x ก็เพิ่มขึ้นด้วย ดังนั้น f เป็นฟังก์ชันเพิ่มบนช่วง (0, ∞)

——————————————————————————————————————————————————————

พิจารณากราฟต่อไปนี้ แล้วบอกว่า f และ g เป็นฟังก์ชันเพิ่มช่วงไหน และเป็นฟังก์ชันลดช่วงไหน

ฟังก์ชันเพิ่มและฟังก์ชันลด

จากกราฟจะได้ว่า g(x)เป็นฟังก์ชั่นเพิ่มบนช่วง [-4, -2]  เพราะ เมื่อ x เพิ่มขึ้น ค่า y ก็เพิ่มขึ้นด้วย

และ f(x) เป็นฟังก์ชันลดบนช่วง [2, 4] เพราะเมื่อ x เพิ่มขึ้น ค่า y ลดลง

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Preposition & Gerund เรื่องเล็กๆ ที่เจอบ๊อยบ่อย

สวัสดีน้องๆ ม. ปลายทุกคนโดยเฉพาะน้องๆ ม. 6 รุ่นโควิดนะครับ วันนี้เรามาทบทวนไวยากรณ์จุดเล็กๆ แต่สำคัญเอาเรื่องอยู่เหมือนกัน นั่นก็คือการใช้ Gerund ตามหลัง Preposition นั่นเอง ว่าแล้วก็เริ่มกันเลยดีกว่าครับ!

มงคลสูตร

รอบรู้เรื่องมงคลสูตรคำฉันท์ วรรณคดีพระพุทธศาสนาที่มาของหลักมงคล 38

บทนำ   สวัสดีน้อง ๆ ทุกคนกลับมาพบกับบทเรียนภาษาไทยที่น่าสนใจอีกเช่นเคย สำหรับเนื้อหาวันนี้เราจะขอหยิบยกวรรณคดีพระพุทธศาสนามาเล่าให้ทุกคนได้ฟังกันบ้าง ซึ่งวรรณคดีที่เราได้เลือกมานั่นก็คือเรื่อง มงคลสูตรคำฉันท์ เชื่อว่าน้อง ๆ มัธยมปลายหลายคนคงจะคุ้นเคยกับเรื่องนี้กันดีอยู่แล้ว เพราะเป็นวรรณคดี ที่สอนบรรทัดฐานของการกระทำความดีตามวิถีของชาวพุทธ และเป็นที่มาของหลักมงคล 38 ประการด้วย ดีงนั้น เดี๋ยววันนี้เราจะพาน้อง ๆ ไปรู้จักกับวรรณคดีเรื่องนี้ให้มากขึ้น ถ้าพร้อมแล้วก็เตรียมตัวเข้าสู่เนื้อหากันได้เลย     ประวัติความเป็นมา เรื่อง

โจทย์ปัญหาการคูณทศนิยม

จากบทความที่แล้วเราได้วิเคราะห์โจทย์ปัญหาการบวกและการลบทศนิยมไปแล้ว บทความนี้จึงจะเป็นการวิเคราะห์โจทย์ปัญหาที่เกี่ยวกับการคูณ รวมไปถึงการแสดงวิธีทำที่จะทำให้น้อง ๆ เข้าใจ และสามารถนำไปใช้ได้จริง

เห็นแก่ลูก ศึกษาความเป็นมาบทละครพูดเรื่องแรกของไทย

  บทละครพูด เห็นแก่ลูก เป็นวรรณคดีเรื่องแรกที่น้อง ๆ ม.3 ทุกคนจะได้เรียน ความพิเศษของวรรณคดีไทยเรื่องนี้คือเป็นบทละครพูดเรื่องแรกของไทยอีกทั้งยังได้รับการแปลไปยันต่างประเทศอีก 13 ภาษา วรรณคดีเรื่องนี้มีความสำคัญและมีเนื้อหาเกี่ยวกับอะไร ถึงโด่งดัง เป็นที่รู้จัก และได้มาอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปศึกษาประวัติความเป็นมาของวรรณคดีเรื่องนี้กันเลยค่ะ   ความเป็นมา บทละครพูด เห็นแก่ลูก     บทละครพูด เห็นแก่ลูก เป็นพระราชนิพนธ์ในพระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัว ทรงใช้พระนามแฝงว่าพระขรรค์เพชร

ผู้ชนะ

ผู้ชนะ บทอาขยานที่ว่าด้วยความไม่ย่อท้อ

บทอาขยาน คือ บทท่องจำจากวรรณคดีเรื่องต่าง ๆ หรือเป็นคำประพันธ์ที่มีความไพเราะ และมีความงดงามทางภาษา มีความหมายดี และให้ข้อคิดที่มีคุณค่า สามารถนำไปใช้ในชีวิตได้ และบทอาขยานที่เราจะได้เรียนรู้กันในวันนี้ก็คือบทอาขยานเรื่อง ผู้ชนะ จะเป็นอย่างไรบ้างนั้นเราไปดูพร้อมกันเลยค่ะ   ประวัติความเป็นมาของเรื่องผู้ชนะ     บุญเสริม แก้วพรหม เป็นนักแต่งกลอนชาวนครศรีธรรมราช เริ่มฝึกเขียนกลอนตั้งแต่สมัยเรียนอยู่ชั้นประถม จากการคลุกคลีกับหนังสือและเรียนรู้เกี่ยวกับบทกลอนในห้องเรียน แต่มาเริ่มเขียนอย่างจริงจังในระดับชั้นมัธยมศึกษา ได้ส่งผลงานเข้าประกวดและผ่านการคัดเลือกลงหนังสือพิมพ์ ออกอากาศทางวิทยุ แนวที่เขียนเป็นเรื่องเกี่ยวกับความรักและสะท้อนสังคม

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1