สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ มุม-ด้าน-มุม
สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 1ด้าน และ มุม 2 มุม ในการพิสูจน์

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ในทางคณิตศาสตร์เมื่อสามารถเคลื่อนที่รูปเรขาคณิตรูปหนึ่งไปทับรูปเรขาคณิตอีกรูปหนึ่งได้สนิท จะกล่าวว่ารูปเรขาคณิตสองรูปนั้น เท่ากันทุกประการ

ถ้ารูปสามเหลี่ยมสองรูปใดๆ มีมุมที่มีขนาดเท่ากันสองคู่ และด้านซึ่งเป็นแขนร่วมของมุมทั้งสองมีขนาดยาวเท่ากันด้วยแล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ

เท่ากันทุกประการแบบมุม-ด้าน-มุม

 

มุม-ด้าน-มุม

ตัวอย่างที่ 1

จงพิสูจน์ว่า PX = PZ เมื่อ รูปสี่เหลี่ยม PXYZ เป็นสี่เหลี่ยมรูปว่าว และมีมุมที่เท่ากันดังรูป

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ความเท่ากันทุกประการของสามเหลี่ยม

ตัวอย่างที่ 2

กำหนดให้ มุมABO = มุมOCD และด้าน BO = OC ตามรูป จงพิสูจน์ว่า AB = CD

สามเหลี่ยมที่เท่ากันแบบมุม-ด้าน-มุม

เท่ากันทุกประการ

ตัวอย่างที่ 3

กำหนดให้ มุมQPS = มุมSPR และ มุมPSQ = มุมPSR = 90องศา อยากทราบว่า สามเหลี่ยมPQR เป็นรูปสามเหลี่ยมหน้าจั่วหรือไม่

สามเหลี่ยมหน้าจั่ว

ความเท่ากันทุกประการ

ตัวอย่างที่ 4

จากรูปกำหนดให้ มุมPOK = มุมRKO และ มุมOKP = มุมKOR จงพิสูจน์ว่าสามเหลี่ยมOPK และสามเหลี่ยมKROเป็นสามเหลี่ยมที่เท่ากันทุกประการ

สามเหลี่ยมที่เท่ากันทุกประการ

ความเท่ากันทุกประการแบบมุม-ด้าน-มุม

คลิปวิดีโอตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โคลงนฤทุมนาการ โคลงสุภาษิตสอนใจรู้ไว้ไม่เป็นทุกข์

หลังจากได้ศึกษาเรื่องโคลงโสฬสไตรยางค์ไปแล้ว น้อง ๆ ทราบไหมคะว่าในโครงสุภาษิตยังมีเรื่องอื่นอีกด้วย และในบทเรียนที่น้อง ๆ จะได้เรียนต่อไปนี้ก็คือเรื่อง โคลงนฤทุมนาการ เป็นโคลงสุภาษิต ที่ใช้โคลงสี่สุภาพในการประพันธ์เหมือนโคลงโสฬสไตรยางค์ แต่จะมีความหมาย และเนื้อหาอย่างไรบ้าง ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   โคลงนฤทุมนาการ คืออะไร     ก่อนที่จะไปเรียนรู้ว่าในโคลงนฤทุมนาการมีอะไรบ้างนั้น เรามาดูกันที่ความหมายก่อนเลยค่ะ คำว่า นฤทุมนาการ มาจากคำศัพท์ต่าง

ราชาศัพท์

ราชาศัพท์ คำใดบ้างที่เราควรรู้?

น้อง ๆ หลายคนคงจะเคยได้ยินคำราชาศัพท์มาบ้างเวลาที่เปิดโทรทัศน์ดูข่าวช่วงหัวค่ำ แต่เคยสงสัยกันบ้างไหมคะว่า ราชาศัพท์ ที่นักข่าวในโทรทัศน์พูดกันบ่อย ๆ มีความหมายว่าอะไรบ้าง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เกี่ยวกับคำราชาศัพท์ เพื่อที่เวลาน้อง ๆ ฟังข่าว จะได้เข้าใจได้ง่ายมากขึ้น เราไปเรียนรู้พร้อมกันเลยค่ะ   ราชาศัพท์     การแบ่งลำดับขั้นของบุคคลในการใช้คำราชาศัพท์ แบ่งออกได้เป็น 5 ระดับ ดังนี้

ตัวบ่งปริมาณ

ตัวบ่งปริมาณและค่าความจริงของตัวบ่งปริมาณ

ตัวบ่งปริมาณ ตัวบ่งปริมาณ คือ สัญลักษณ์หรือข้อความที่เมื่อเราเอาไปเติมใน “ประโยคเปิด” แล้วจะทำให้ประโยคนั้นกลายเป็นประพจน์ ประโยคเปิด คือประโยคบอกเล่าหรือปฏิเสธที่ติดค่าตัวแปรที่ยัง “ไม่รู้ว่าเป็นจริงหรือเท็จ” โดยตัวแปรนั้นเป็นสมาชิกของเอกภพสัมพัทธ์ (Universe : U) ประโยคเปิด ยังไม่ใช่ประพจน์ (แต่เกือบเป็นแล้ว) เพราะเรายังไม่รู้ว่าเป็นจริงหรือเท็จ เช่น  “x มากกว่า 3” จะเห็นว่าตัวแปร คือ x ซึ่งเราไม่รู้ว่า x

เปรียบเทียบเศษส่วนและจำนวนคละฉบับเข้าใจง่ายและเห็นภาพ

บทความนี้จะพาน้องๆ มาทำความเข้าใจเกี่ยวกับเรื่องการเปรียบเทียบเศษส่วนและจำนวนคละ  เนื่องจากหลักการที่ใช้ในการเปรียบเทียบเศษส่วนนี้จะนำไปต่อยอดกับเรื่องต่อไปเช่นเรื่องการบวกและการลบเศษส่วน หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือ หลักการเปรียบเทียบเศษส่วน วิธีเปรียบเทียบที่เห็นภาพและเข้าใจง่ายร่วมถึงเทคนิคที่จะช่วยให้น้อง ๆ สามารถเปรียบเทียบเศษส่วนได้เร็วยิ่งขึ้น

+ – × ÷ ระคนของเศษส่วนและจำนวนคละ

บทความนี้จะพูดถึงขั้นตอนการหาคำตอบของการ + – × ÷ เศษส่วนและจำนวนคละระคน ซึ่งน้อง ๆ จะสามารถหาคำตอบ แสดงวิธีทำและหาคำตอบออกมาได้อย่างสมเหตุสมผล

สัญลักษณ์พื้นฐานเกี่ยวกับเซต

สัญลักษณ์ของเซตจะช่วยให้เราไม่ต้องเขียนประโยคยาวซ้ำๆ และใช้ได้เกือบทุกบทของวิชาคณิตศาสตร์ ช่วยให้ประหยัดเวลาและเนื้อที่บนกระดาษมากๆ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1