บทกลับของทฤษฎีบทพีทาโกรัส

ในบทความนี้เราจะได้เรียนรู้ความหมายและหลักการในการแสดงเหตุและผลของบทกลับของทฤษฎีบทพีทาโกรัส
บทกลับของทฤษฎีบทพีทาโกรัส

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จะเห็นได้ว่าบทกลับของทฤษฎีบทพีทาโกรัสเป็นการนําผลของทฤษฎีบทพีทาโกรัสมาเป็นเหตุและนําเหตุมาเป็นผลนั่นเอง เพื่อประยุกต์ใช้ในรูปสามเหลี่ยมแต่ละลักษณะนั่นเอง

บทกลับของทฤษฎีบทพีทาโกรัส

บทกลับของทฤษฎีบทพีทาโกรัสกล่าวว่า สำหรับรูปสามเหลี่ยมใดๆ ถ้ากำลังสองของความยาวของด้านด้านหนึ่งเท่ากับผลบวกของกำลังสองของความยาวของด้านอีกสองด้านแล้วรูปสามเหลี่ยมนั้นเป็นสามเหลี่ยมมุมฉาก

โดยบทกลับของทฤษฎีบทพีทาโกรัสเป็นการนำผลของทฤษฎีบทพีทาโกรัสมาเป็นเหตุและนำเหตุมาเป็นผล ดังนั้น

เหตุ: มีรูปสามเหลี่ยมรูปหนึ่ง เป็นรูปสามเหลี่ยมมุมฉาก

ผล : กำลังสองของความยาวของด้านตรงข้ามมุมฉาก เท่ากับ ผลบวกของกำลังสองของความยาวของด้านประกอบมุมฉากของรูปสามเหลี่ยม

เมื่อนำผลข้างต้นมาเป็นเหตุ และเหตุมาเป็นผล ก็จะได้บทกลับของทฤษฎีบทพีทาโกรัส ดังนี้

บทกลับพีทาโกรัส

ตัวอย่างที่ 1

กำหนดความยาวของด้านทั้งสามของรูปสามเหลี่ยมให้ให้แสดงว่ารูปสามเหลี่ยมนั้นเป็นรูปสามเหลี่ยมมุมฉากหรือไม่

1) 7, 9, 11          2) 8, 15, 17

ตัวอย่างบกลับพีทาโกรัส

ในกรณีที่โจทย์กำหนดความยาวให้ 3 ด้าน และถามว่านำมาประกอบกันเป็นรูปสามเหลี่ยมมุมฉากหรือไม่ ถ้าใช่ยังสามารถตรวจสอบต่อไปได้อีกว่าเป็นรูปสามเหลี่ยมอะไรโดยพิจารณาให้ ดังนี้

ทฤษฎีบทกลับ

และความยาวของด้านทั้งสามต้องสัมพันธ์กันดังนี้คือ c < a + b มิฉะนั้นจะนำมาสร้างรูปสามเหลี่ยมไม่ได้

ตัวอย่างที่ 2

กำหนดความยาวของด้านให้สามด้าน นำมาสร้างรูปสามเหลี่ยมจะได้รูปสามเหลี่ยมอะไร

1) 2, 3,6            2) 3, 4, 5            3) 4 5, 6            4) 5, 6, 8

ตัวอย่างบทกลับพีทาโกรัส

คลิปตัวอย่างเรื่องบทกลับของทฤษฎีบทพีทาโกรัส

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ม.1 หลักการใช้ Past Simple

หลักการใช้ Past Simple Tense

Hi guys! สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง หลักการใช้ Past Simple   ถ้าพร้อมแล้วก็ไปลุยกันโลด Past Simple Tense     หลักการใช้ง่ายๆ ใช้กับเหตุการณ์ หรือการกระทำที่เกิดขึ้นและจบลงในอดีต มักมีคำหรือกลุ่มคำของอดีตมากำกับ ตัวอย่างประโยคทั่วไปที่มักเจอบ่อยๆ   บอกเล่า I saw Jack yesterday.

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้ นิยาม ให้  x, y เป็นจำนวนจริง และ n

nokAcademy Profile_Asking and telling time by

การบอกเวลาในภาษาอังกฤษ (Telling time in English)

Hi guys! สวัสดีค่ะนักเรียนชั้นม. 1 ที่น่ารักทุกคน วันนี้เราจะไปดูวีการ “บอกเวลาในภาษาอังกฤษ หรือ Telling time in English กันค่ะ” ไปลุยกันเลย   บทนำ   ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษานะคะ 

การแยกตัวประกอบ

การแยกตัวประกอบ

การแยกตัวประกอบ การแยกตัวประกอบ ของจำนวนนับใด หมายถึง การเขียนจำนวนนับนั้นในรูปการคูณของ ตัวประกอบเฉพาะ  ซึ่งในบทความนี้ได้นำเสนอวิธีการ รวมถึง โจทย์การแยกตัวประกอบ ไว้มากมาย น้องๆสามารถศึกษาเรียนรู้ได้ดวยตนเองโดยที่มีวิธีการแยกตัวประกอบ 2 วิธี ดังนี้ การแยกตัวประกอบ  โดยการคูณ  การแยกตัวประกอบ  โดยการหาร (หารสั้น)         ก่อนอื่นน้องๆมาทบทวน ความหมายของตัวประกอบและจำนวนเฉพาะ

เปรียบเทียบเศษส่วนและจำนวนคละฉบับเข้าใจง่ายและเห็นภาพ

บทความนี้จะพาน้องๆ มาทำความเข้าใจเกี่ยวกับเรื่องการเปรียบเทียบเศษส่วนและจำนวนคละ  เนื่องจากหลักการที่ใช้ในการเปรียบเทียบเศษส่วนนี้จะนำไปต่อยอดกับเรื่องต่อไปเช่นเรื่องการบวกและการลบเศษส่วน หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือ หลักการเปรียบเทียบเศษส่วน วิธีเปรียบเทียบที่เห็นภาพและเข้าใจง่ายร่วมถึงเทคนิคที่จะช่วยให้น้อง ๆ สามารถเปรียบเทียบเศษส่วนได้เร็วยิ่งขึ้น

กราฟแสดงคำตอบของอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้แนะนำการเขียน กราฟแสดงคำตอบของอสมการเชิงเส้นตัวแปรเดียว  ซึ่งจะเชื่อมโยงกับสัญลักษณ์ของอสมการทั้ง 5 สัญลักษณ์ คือ มากกว่า (>), น้อยกว่า (<), มากกว่าหรือเท่ากับ (≥), น้อยกว่าหรือเท่ากับ (≤) และ ไม่ท่ากับ(≠) โดยเขียนแสดงบนเส้นจำนวน จุดทึบและจุดโปร่ง เราจะเลือกใช้จุดทึบ (•) และจุดโปร่ง (°) แทนสัญลักษณ์อสมการ ดังนี้ มากกว่า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1