สมบัติการบวกจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สมบัติการบวกจำนวนจริง

สมบัติการบวกจำนวนจริง เป็นสมบัติที่น้องๆต้องรู้ เพราะเป็นรากฐานของวิชาคณิตศาสตร์และน้องๆจะต้องใช้สมบัติพวกนี้ในการเรียนคณิตศาสตร์ในระดับที่สูงขึ้น สมบัติการบวกของจำนวนจริง มีทั้งหมด 5 ข้อ ดังนี้

 

1.) สมบัติปิดการบวก 

สมบัติปิดการบวก คือ การที่เรานำจำนวนจริง 2 ตัวมาบวกกัน เราก็ยังได้ผลลัพธ์เป็นจำนวนจริงเหมือนเดิม

เช่น 1 + 2 = 3 จะเห็นว่า 1, 2 เป็นจำนวนจริง เมื่อนำมาบวกกัน ได้ 3 ก็ยังเป็นจำนวนจริง

ดังนั้น ถ้าให้ a, b ∈   จะได้ว่า a + b ∈

 

2.) สมบัติการสลับที่การบวก

ให้ a, b ∈ สมบัติการบวกจำนวนจริง เมื่อ สมบัติการบวกจำนวนจริง เป็นจำนวนจริง จะได้ว่า a + b = b + a

เช่น 2 + 3 = 3 + 2

เราจะตรวจสอบว่า ข้อความข้างบนเป็นจริง

พิจารณา 2 + 3 = 5

พิจาณนา 3 + 2 = 5

ดังนั้น 2 + 3 = 3 + 2

 

3.) สมบัติการเปลี่ยนหมู่ที่การบวก

ให้ a, b, c ∈ เมื่อ สมบัติการบวกจำนวนจริง เป็นจำนวนจริง จะได้ว่า (a + b) + c = a + (b + c)

เช่น (1 + 2) + 4 = 1 + (2 + 4)

ตรวจสอบว่าข้อความข้างต้นเป็นจริง

พิจารณา (1 + 2) + 4 = 3 + 4 = 7

พิจารณา 1 + (2 + 4) = 1 + 6 = 7

ดังนั้น  (1 + 2) + 4 = 1 + (2 + 4)

 

4.) สมบัติการมีเอกลักษณ์การบวก

สมบัติการมีเอกลักษณ์คือ ไม่ว่าเราจะนำจำนวนจริงใด มาบวกกับเอกลักษณ์ เราจะได้ค่าเดิม

ซึ่งเอกลักษณ์ก็คือ 0 นั่นเอง (เฉพาะของการบวกนะจ๊ะ)

ให้ a ∈ สมบัติการบวกจำนวนจริง จะได้ว่า a + 0 = a

เช่น 1 + 0 = 1

2 + 0 = 2

\sqrt{2} + 0 = \sqrt{2}

** เอกลักษณ์การบวกมีเพียงตัวเดียวเท่านั้น คือ 0 

 

5.) สมบัติการมีตัวผกผันของการบวก

ตัวผกผันการบวก หรือ อินเวอร์สการบวก คือ จำนวนที่เมื่อนำมาบวกกับจำนวนจริงใดๆ แล้วได้ผลลัพธ์เท่ากับ 0

ให้ a ∈ สมบัติการบวกจำนวนจริง จะได้ว่า อินเวอร์สของ a มีเพียงค่าเดียว คือ -a เพราะ a + (-a) = 0 

เช่น  อินเวอร์สการบวกของ 1 มีเพียงค่าเดียว ก็คือ -1 เพราะ 1 + (-1) = 0 

อินเวอร์สการบวกของ 2 มีเพียงค่าเดียว ก็คือ -2 เพราะ 2 + (-2) = 0

 

**อินเวอร์สบวก หรือตัวผกผันการบวก ไม่จำเป็นต้องจำนวนจริงลบ สามารถเป็นจำนวนจริงบวกได้ เช่น

อินเวอร์สการบวกของ -3 คือ 3

อินเวอร์สการบวกของ -1.25 คือ 1.25 

 

นอกจากสมบัติการบวกจำนวนจริงแล้วยังมีสมบัติการคูณจำนวนจริงด้วยนะคะ ซึ่งน้องๆสามารถเข้าไปอ่านบทความได้ที่ >> สมบัติการคูณจำนวนจริง

 

วีดิโอ สมบัติการบวกของจำนวนจริง

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ที่มาและเรื่องย่อของ มหาชาติชาดก กัณฑ์มัทรี

มหาชาติชาดก หรือมหาเวสสันดรชาดก เป็นชาดกที่ได้ชื่อว่าเป็น มหาชาติ เพราะเป็นชาติสุดท้ายก่อนจะมาจุติเป็นพระพุทธเจ้า จากบทเรียนที่เคยเรียนรู้กันตอน ม.4 น้อง ๆ คงจะทราบกันดีอยู่แล้วว่ามหาชาตินี้มีด้วยกันทั้งหมด 13 กัณฑ์ โดยเรื่องที่เราจะได้เรียนกันเจาะลึกกันไปอีกในวันนี้ คือ กัณฑ์มัทรี นั่นเองค่ะ ถ้าน้อง ๆ อยากรู้แล้วว่าเป็นอย่างไร ก็ไปเรียนรู้พร้อมกันเลยค่ะ   ความเป็นมา     มหาชาติชาดกเป็นเรื่องราวในอดีตกาลของพระพุทธเจ้าที่เล่าให้กับเหล่าประยูรญาติฟังเมื่อครั้งเสด็จกลับเมืองและได้แสดงอภินิหาร

วงกลม

วงกลม

วงกลม วงกลม ประกอบด้วยจุดศูนย์กลาง (center) เส้นผ่านศูนย์กลาง และรัศมี (radius) สมการรูปแบบมาตรฐานของวงกลม สมการรูปแบบมาตรฐานของวงกลมที่มีจุดศูนย์กลางที่ (h, k) คือ (x-h)² + (y-k)² = r² จากสมการ จะได้ว่า มีจุดศูนย์กลางที่ (h, k) และรัศมี r จะเห็นว่าถ้าเรารู้สมการมาตรฐานเราจะรู้รัศมี

ร่ายสุภาพ เรียนรู้บทร้อยกรองที่แต่งง่ายที่สุด

หลังจากที่ได้เรียนรู้เกี่ยวกับวรรณคดีมามากมาย น้อง ๆ หลายคนก็คงจะเห็นคำประพันธ์ประเภท ร่าย ผ่านตากันมาบ้างแล้วใช่ไหมคะ ถึงแม้ว่าคำประพันธ์นี้จะไม่ได้มีมากที่สุด แต่ก็เป็นอีกหนึ่งคำประพันธ์ประเภทร้อยกรองที่มีมาตั้งแต่โบราณ แถมยังแต่งง่ายมากที่สุดอีกด้วย จะเป็นอย่างไรนั้น เราไปเรียนรู้การแต่งคำประพันธ์อย่าง ร่ายสุภาพ พร้อมกันเลยค่ะ   ร่าย คืออะไร?   ร่าย แปลว่า อ่าน เสก หรือ เดิน เหรือแปลว่าป็นคำประพันธ์ประเภทร้อยกรองแบบหนึ่งก็ได้ ร่ายเป็นบทประพันธ์ที่แต่งง่าย

เรียนรู้เทคนิคที่จะช่วยให้การเขียน ผังมโนภาพ เป็นเรื่องง่ายๆ

  ผังมโนภาพ เป็นเทคนิคที่พัฒนาขึ้นจากจดบันทึกความคิด ความรู้ ความเข้าใจ น้อง ๆ หลายคนก็คงจะเคยได้รับโจทย์จากคุณครูให้เขียนแผนผังมโนภาพเพื่อทดสอบความเข้าใจ หลายคนอาจจะคิดว่าเป็นเรื่องยากที่จะเขียนออกมา แต่ทราบไหมคะว่าที่จริงแล้วมีวิธีการเขียนที่ง่ายมากแถมยังมีประโยชน์อีกด้วย จะเป็นอย่างไรไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ความหมายของผังมโนภาพ   ผังมโนภาพเป็นแผนผังหรือแผนภาพที่แสดงความสัมพันธ์ของมโนทัศน์หรือความคิดรวบยอด ที่เริ่มจากความคิดหลัก ซึ่งทำหน้าที่เป็นชื่อเรื่อง แล้วแตกแขนงไปสู่ความคิดย่อย ๆ กระจายออกไปโดยรอบ ทำให้เกิดภาพเชื่อมโยงขององค์ความรู้เรื่องใดเรื่องหนึ่งในทุกแง่มุม   วิธีเขียนแผนผังมโนภาพ   ผังมโนภาพเป็นผังที่แสดงความสัมพันธ์ของสาระหรือความคิดต่าง

หลักการใช้คำราชาศัพท์ รู้ไว้ไม่สับสน

เมื่อได้รู้ความหมาย ที่มาและความสำคัญของคำราชาศัพท์ รวมถึงคำศัพท์หมวดร่างกายไปแล้ว น้อง ๆ ก็คงจะสงสัยใช่ไหมคะ ว่าหลักการใช้คำราชาศัพท์ มีอะไรบ้าง และใช้อย่างไร ต้องใช้แบบไหนถึงจะถูก บทเรียนในวันนี้เราจะมาเรียนรู้หลักการใช้คำราชาศัพท์ที่ถูกต้องกันค่ะ ไปเรียนรู้พร้อม ๆ กันแลย   หลักการใช้คำราชาศัพท์ กับราชวงศ์ไทย     ลำดับพระอิสริยศักดิ์ของพระบรมราชวงศ์สามารถลำดับอย่างคร่าว ๆ ได้ดังนี้ พระบาทสมเด็จพระเจ้าอยู่หัว, สมเด็จพระบรมราชินีนาถ สมเด็จพระราชินี,

การบรรยายตนเอง + Present Simple

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับตัวเราในภาษาอังกฤษกันค่ะ ได้แก่ “ การบรรยายตนเอง + Present Simple “ พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลย   ทบทวน Present Simple Tense     ความหมาย: Present แปลว่า ปัจจุบัน ดังนั้น Present

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1