จำนวนสมาชิกของเซตจำกัด

จำนวนสมาชิกของเซตจำกัด เป็นเรื่องที่สามารถเอาไปใช้ในชีวิตประจำวันได้จริง และสิ่งที่น้องๆจะได้หลังจากอ่านบทความนี้คือ น้องๆจะสามารถทำโจทย์ปัญหาเกี่ยวกับจำนวนสมาชิกของเซตจำกัดได้ และอาจจะเอาไปประยุกต์ใช้ในชีวิตประจำวันได้ด้วย

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะใช้เนื้อหาเรื่องการดำเนินการของเซตด้วยเล็กน้อย ก่อนอื่นเรามารู้จักกับ สัญลักษณ์ จำนวนของสมาชิกก่อนนะคะ

ให้A เป็นเซตจำกัด เราจะใช้ n(A) แทนจำนวนสมาชิกของเซต A

เช่น A = {a,b,c,d} จะได้ n(A) = 4

B = {5,6,7,8,9,10} จะได้ n(B) = 6

จำนวนสมาชิกของเซตจำกัดสองเซต


กรณีที่ 1 ถ้า A  และ B เป็นเซตที่ไม่มีสมาชิกร่วมกัน

จะได้ว่า n(A∪B) = n(A)+n(B)

เช่น ให้ A = {1,2,3,4,5}, B = {6,7,8,9,10} จะได้ n(A) = 5, n(B) = 5

พิจารณา A∪B = {1,2,3,4,5,6,7,8,9,10} จะได้ n(A∪B) = 10

พิจารณา n(A)+n(B) = 5+5 = 10

ดังนั้นจะได้ว่า ถ้า A และ B ไม่มีสมาชิกร่วมกัน จะได้ n(A∪B) = n(A)+n(B)

กรณีที่ 2 ถ้า A และ B มีสมาชิกร่วมกัน

จะได้ว่า n(A∪B) = n(A)+n(B)-n(A∩B)

เช่น ให้ A ={1,2,3,4,5}, B = {4,5,6,7,8} จะได้ n(A) = 5 , n(B) = 5

พิจารณา A∪B = {1,2,3,4,5,5,6,7,8} จะได้ n(A∪B) = 8

พิจาณรา A∩B = {4,5} จะได้ n(A∩B) = 2

พิจารณา n(A)+n(B) = 5+5 = 10

พิจารณา n(A)+n(B)-n(A∩B) = 5+5-2 = 8

จะเห็นกว่า n(A∪B) ≠ n(A)+n(B) แต่ n(A∪B) = n(A)+n(B)-n(A∩B)

ดังนั้น ถ้า A,B มีสมาชิกร่วมกัน จะได้ว่า n(A∪B) = n(A)+n(B)-n(A∩B)

กรณีที่ 3 ถ้า A และ B เป็นเซตจำกัด จะได้ว่า n(A-B) = n(A) – n(A∩B)

จำนวนสมาชิกของเซตจำกัดสามเซต

ให้ A = {3,4,5,6} , B = {4,5,6,7}, C = {4,5,9}

ถ้าให้ A และ B เป็นเซตจำกัด

จะได้ว่า n(A-B-C) = n(A)-n(A∩B)-n(A∩C)+n(A∩B∩C)

สรุปสูตรการหาจำนวนสมาชิกของเซตจำกัด

ถ้า A, B และ C เป็นเซตจำกัด

1.) n(A∪B) = n(A)+n(B)-n(A∩B)

2.) n(A-B) = n(A) – n(A∩B)

3.) n(A∪B∪C) = n(A)+n(B)+n(C)-n(A∩B)-n(A∩C)-n(B∩C)+n(A∩B∩C)

4.) n(A-B-C) = n(A)-n(A∩B)-n(A∩C)+n(A∩B∩C)

 

ตัวอย่าง

1.) ถ้า A และ B มีจำนวนสมาชิกเท่ากัน A∪B มีสมาชิก 15 ตัว และ A∩B มีสมาชิก 5 ตัว จงหาจำนวนสมาชิกของ A-B และ B-A

วิธีทำ จากโจทย์ n(A∪B) = 15 และ n(A∩B) = 5

 จากสูตร n(A∪B) = n(A)+n(B)-n(A∩B)

จะได้ว่า 15 = n(A)+n(B)-5

บวก 5 เข้าทั้งสองข้างของสมการ จะได้

 20 = n(A)+n(B) 

จากที่เรารู้ว่า A และ B มีจำนวนสมาชิกเท่ากัน ทำให้ได้ว่า 

n(A) = n(B) ดังนั้น เราจะแทน n(A) = n(B) ในสมการ 20 = n(A)+n(B) 

จะได้ว่า 20 = n(A)+n(A)

  20 = 2n(A)

หารด้วย 2 ทั้งสมการ จะได้

n(A) = 10 ทำให้ได้ว่า n(B) = 10

แต่โจทย์อยากได้ n(A-B) และ n(B-A) 

จาก n(A-B) = n(A) – n(A∩B)

จะได้ว่า n(A-B) = 10-5 = 5

และ n(B-A) = n(B)-n(A∩B) = 10-5 = 5

ตอบ จำนวนสมาชิกของ A-B และ B-A เท่ากับ 5 

เราสามารถหาคำตอบโดยการใช้แผนภาพได้ ดังนี้

2.) จากผลสำรวจความชอบเกี่ยวกับวิชาคณิตศาสตร์ ภาษาไทย และอังกฤษของนักเรียนชั้นมัธยมศึกษาปีที่ 4 ทั้งหมด ผลเป็นดังนี้

ไม่ชอบคณิตศาสตร์ 70 คน

ไม่ชอบภาษาไทย 90 คน

ไม่ชอบอังกฤษ 40 คน

ไม่ชอบคณิตศาสตร์และไม่ชอบภาษาไทย 40 คน

ไม่ชอบคณิตศาสตร์และอังกฤษ 20 คน

ไม่ชอบภาษาไทยและอังกฤษ 15 คน

ไม่ชอบทั้งสามวิชา 10 คน

ชอบทั้งสามวิชาวิชา 0 คน

อยากทราบว่า มีนักเรียนชั้นมัธยมศึกษาปีที่ 4 ทั้งหมดกี่คน

วิธีทำ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ป6การใช้ love, like, enjoy, hate ในการเเต่งประโยค

การใช้ love, like, enjoy, hate ในการเเต่งประโยค

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้  love, like, enjoy, hate ในการเเต่งประโยค หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go!   โครงสร้าง: In my free time/ In my spare time,…     In my

การเขียนบรรยาย

การเขียนบรรยาย อธิบาย พรรณนา เรียนรู้ 3 การเขียนที่สำคัญในยุคปัจจุบัน

ทักษะการเขียนอธิบาย การเขียนบรรยาย และการเขียนพรรณนา ถือว่ามีความสำคัญอย่างมากในปัจจุบัน เพราะมนุษย์นั้นมีสัญชาตญาณในการอยากรู้และหาคำตอบ ดังนั้นเราจึงไม่อาจเลี่ยงตอบคำถามใครได้ ดังนั้นการตอบคำถามหรือทำให้ผู้รับสารเข้าใจตรงกันจึงเป็นสิ่งจำเป็น บทเรียนวันนี้เราจะมาเรียนรู้เทคนิคการเขียนทั้งสามแบบว่ามีวิธีการเขียนอย่างไร ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การเขียน   การเขียนอธิบาย   การเขียนอธิบาย หมายถึง การทำให้บุคคลอื่นเข้าใจในความจริงที่เกิดขึ้น มีกลวิธีการเขียนดังนี้ กลวิธีการเขียนอธิบาย 1. การอธิบายตามลำดับขั้น เป็นอธิบายไปทีละขั้นตอน ใช้ในการเขียนอธิบายถึงกิจกรรมหรือวิธีทำบางสิ่งบางอย่าง    

จำนวนอตรรกยะ

จำนวนอตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนอตรรกยะ และหลักการของจำนวนอตรรกยะกับการนำไปประยุกต์

สามัคคีเภทคำฉันท์

สามัคคีเภทคำฉันท์ วรรณคดีขนาดสั้นที่ว่าด้วยความสามัคคี

สามัคคีเภทคำฉันท์ เป็นนิทานสุภาษิตขนาดสั้นว่าด้วยเรื่องความสามัคคี เป็นอีกหนึ่งวรรณคดีที่ได้รับการยกย่องว่าแต่งดี ทั้งด้านการประพันธ์และเนื้อหา เหตุใดจึงเป็นเช่นนั้น บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนไปทำความรู้จักกับวรรณคดีเรื่องดังกล่าวเพื่อศึกษาที่มา จุดประสงค์ รวมไปถึงเรื่องย่อ ถ้าพร้อมแล้วไปดูกันเลยค่ะ   ที่มาของเรื่องและจุดประสงค์ในการแต่ง   สามัคคีเภทคำฉันท์ ดำเนินเรื่องโดยอิงประวัติศาสตร์ครั้งพุทธกาล เป็นนิทานสุภาษิตในมหาปรินิพพานสูตรและอรรถกถาสุมังคลวิลาสินี     ในสมัยรัชกาลที่ 6 เกิดวิกฤตการณ์ทั้งภายในและภายนอกประเทศ เช่น เกิดสงครามโลกครั้งที่ 1

ลบไม่ได้ช่วยให้ลืม เช่นเดียวกับการลบเศษส่วนและจำนวนคละ!

บทความที่แล้วเราได้กล่าวถึงการบวกเศษส่วนและจำนวนคละไปแล้ว บทต่อมาก็จะเป็นเรื่องของการลบเศษส่วนและจำนวนคละ ทั้งสองเรื่องนี้มีหลักการคล้ายกันต่างกันที่เครื่องหมายที่บ่งบอกว่าโจทย์ต้องการทราบอะไร ดังนั้นบทความนี้จะอธิบายถึงหลักการลบเศษส่วนและจำนวนคละอย่างละเอียดและยกตัวอย่างให้น้อง ๆเข้าใจอย่างเห็นภาพและสามารถนำไปปรับใช้กับแบบฝึกหัดเรื่องการลบเศษส่วนและจำนวนคละได้

การให้เหตุผลแบบนิรนัย

การให้เหตุผลแบบนิรนัย

จากบทความที่แล้วเราได้เรียนเรื่องการให้เหตุผลแบบอุปนัยไปแล้ว บทความนี้พี่จะพูดถึงการให้เหตผลแบบนิรนัย ซึ่งแน่นอนว่ามักจะเจอในข้อสอบ O-Net แต่น้องๆไม่ต้องกังวลว่าจะทำไม่ได้ หากน้องได้อ่านบทความนี้แล้วน้องๆจะทำข้อสอบเกี่ยวกับการให้เหตุผลได้แน่นอนค่ะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1