ความยาวรอบรูปเเละพื้นที่ของวงกลม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความยาวรอบรูปเเละพื้นที่ของวงกลม

ความยาวรอบรูปของวงกลม หรือเรียกว่า ความยาวเส้นรอบวงของวงกลม คือ ความยาวของเส้นรอบวงกลมสามารถคำนวณได้ ดังนี้

C = 2\pi r

โดย:  C        คือ ความยาวของเส้นรอบวง (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น)

π         คือ อัตราส่วนระหว่างเส้นรอบวงกับรัศมี มีค่าประมาณ 22/7 หรือ 3.14

r         คือ รัศมีของวงกลม (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น)

พื้นที่ของวงกลม คือ พื้นที่ทั้งหมดที่อยู่ภายในขอบเขตของเส้นรอบวง ซึ่งสามารถคำนวณได้ดังนี้

A = \pi r^{2}

โดย:  A        คือ พื้นที่ของวงกลม (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น)

π        คือ อัตราส่วนระหว่างเส้นรอบวงกับรัศมี มีค่าประมาณ 22/7 หรือ 3.14

r         คือ รัศมีของวงกลม (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น)


ตัวอย่างโจทย์ความยาวรอบรูปเเละพื้นที่ของวงกลม

ตัวอย่างที่ 1 จงหาความยาวของเส้นรอบวงของวงกลมต่อไปนี้ (กำหนดให้ π = 22/7)

วิธีทำ
2πr = 2 x (22/7) x 28    (ตัด 28 กับ 7)
        = 2 x 22 x 4
        = 176 เมตร

ตอบ เส้นรอบวงยาว 176 เมตร

 

 

ตัวอย่างที่ 2 จงหาความยาวรอบสนามเด็กเล่นของโรงเรียนเเมวน้ำวิทยา เเละพื้นที่ของสนามเด็กเล่น (กำหนดให้ π = 3.14 )

วิธีทำ จากรูปจะสังเกตได้ว่าโจทย์ให้เส้นผ่านศูนย์กลางมา ซึ่งรัศมีจะมีขนาดเป็นครึ่งหนึ่งของเส้นผ่านศูนย์กลาง
ดังนั้น รัศมี = 50 เมตร
ความยาวรอบวงของวงกลมมีค่า
2πr = 2 x 3.14 x 50
       = 314 เมตร

 

พื้นที่ของวงกลม = \pi r^{2}

= 3.14 x 50 x 50

= 7850 ตารางเมตร

ตอบ ความยาวรอบสนามเด็กเล่นมีค่า 314 m. เเละมีพื้นที่ 7850 ตารางเมตร

ตัวอย่างที่ 3 วงกลมวงหนึ่งมีเส้นรอบวงยาว 94.2 มิลลิเมตร วงกลมนี้จะมีรัศมียาวเท่าใด เเละมีพื้นที่เท่าใด (กำหนดให้ π = 3.14)

ความยาวเส้นรอบวง = 2πr

94.2     = 2 x 3.14 x r

94.2     = 6.28 x r

ย้ายข้าง 6.28 ไปหา 94.2 เพื่อหาค่า r

94.2/6.28 = r

ดังนั้น           r = 15 มิลลิเมตร

พื้นที่ของวงกลม = \pi r^{2}

= 3.14 x 15 x 15

= 706.5 ตารางมิลลิเมตร

ตอบ รัศมีของวงกลมยาว 15 มิลลิเมตร เเละมีพื้นที่ 706.5 ตารางมิลลิเมตร

ตัวอย่างที่ 4 จงหาความยาวของเส้นรอบวงเเละพื้นที่ของวงกลมที่อยู่เเนบชิดในสี่เหลี่ยมจตุรัสที่มีพื้นที่ภายในสี่เหลี่ยมจตุรัสเท่ากับ 100 ตารางเซนติเมตร (กำหนดให้ π = 3.14)

วิธีทำ สร้างรูปวงกลมที่อยู่ในสี่เหลี่ยมขึ้นมาได้ดังนี้

จากภาพที่สร้างขึ้นจะเห็นได้ว่าความยาวเส้นผ่านศูนย์กลางของวงกลมมีขนาดเท่ากับความยาวด้านของสี่เหลี่ยมจตุรัส

 

 

ดังนั้น พื้นที่ของสี่เหลี่ยมจตุรัส = ความยาวด้าน x ความยาวด้าน

100 ตร.ซม.          = d x d   (กำหนดให้ d = ความยาวด้านของสี่เหลี่ยม)
100 ตร.ซม.          = d^{2}

จะเห็นได้ว่าพื้นที่ของสี่เหลี่ยมจตุรัสมีค่าเท่ากับ 100 ตร.ซม. ซึ่ง 100 เท่ากับ 10 x 10
ดังนั้น ความยาวด้านของสี่เหลี่ยมจตุรัส = 10 เซนติเมตร
เเสดงว่าความยาวเส้นผ่านศูนย์กลางของวงกลม = 10 เซนติเมตร
เเละรัศมีของวงกลม = 5 เซนติเมตร

ความยาวเส้นรอบวงของวงกลม = 2πr

= 2 x 3.14 x 5

= 31.4 เซนติเมตร

พื้นที่ของวงกลม = \pi r^{2}

= 3.14 x 5 x 5

= 78.5 ตารางเซนติเมตร

ตอบ ความยาวเส้นรอบวงของวงกลมมีค่า 31.4 เซนติเมตร เเละพื้นที่ 78.5 ตารางเซนติเมตร

หากน้อง ๆ สามารถคำนวณความยาวรอบรูปเเละพื้นที่ของวงกลมได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคต น้องสามารถศึกษาการหา ความยาวรอบรูปเเละพื้นที่วงกลม เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ ความยาวรอบรูปเเละพื้นที่วงกลม

คลิปวิดีโอนี้ได้รวบรวมวิธีหา ความยาวรอบรูปเเละพื้นที่วงกลม ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติการบวกจำนวนจริง

สมบัติการบวกจำนวนจริง สมบัติการบวกจำนวนจริง เป็นสมบัติที่น้องๆต้องรู้ เพราะเป็นรากฐานของวิชาคณิตศาสตร์และน้องๆจะต้องใช้สมบัติพวกนี้ในการเรียนคณิตศาสตร์ในระดับที่สูงขึ้น สมบัติการบวกของจำนวนจริง มีทั้งหมด 5 ข้อ ดังนี้   1.) สมบัติปิดการบวก  สมบัติปิดการบวก คือ การที่เรานำจำนวนจริง 2 ตัวมาบวกกัน เราก็ยังได้ผลลัพธ์เป็นจำนวนจริงเหมือนเดิม เช่น 1 + 2 = 3 จะเห็นว่า

นิราศภูเขาทอง ประวัติความเป็นมาของวรรณคดีที่แต่งโดยสุนทรภู่

นิราศภูเขาทอง   เชื่อว่าน้อง ๆ หลายคนคงจะเคยได้ยินเรื่องนิราศภูเขาทองผ่านหูกันมาบ้างไม่มากก็น้อย แต่น้อง ๆ ทราบหรือเปล่าคะว่านิราศภูเขาทองคืออะไร และมีที่มาอย่างไร ก่อนอื่นมาดูความหมายของนิราศกันก่อนนะคะ นิราศ คือวรรณคดีที่แต่งขึ้นเพื่อเล่าถึงการเดินจากที่หนึ่งไปอีกที่หนึ่ง โดยระหว่างการเดินทาง กวีก็จะนำสิ่งต่าง ๆ ที่ได้พบเห็น ไม่ว่าจะเป็นธรรมชาติ วิวทิวทัศน์หรือความเป็นอยู่ของผู้คนมาพรรณนา   หลังจากเข้าใจความหมายของนิราศแล้วก็ไปเริ่มเรียนรู้ประวัติความเป็นมาและเรื่องย่อของนิราศภูเขาทอง หนึ่งในกลอนนิราศที่ได้รับการยกย่องว่าแต่งดีที่สุดของสุนทรภู่กันเลยค่ะ   ประวัติความเป็นมา   สุนทรภู่แต่งนิราศภูเขาทองขึ้นมาในสมัยรัชสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่เจ้าหัว

เรียนรู้เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่�

เรียนรู้เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

สวัสดีนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับ  “เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันโลดเด้อ Let’s go!   ทบทวน Present Simple Tense     Present แปลว่า ปัจจุบัน ดังนั้น Present Simple

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

จุด

จุด : เรขาคณิตวิเคราะห์

จุด จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น   ระยะทางระหว่างจุดสองจุด เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร โดยจะกำหนดให้  และ  เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก ตัวอย่าง ระยะห่างระหว่าง A(1,1) และ

past simple tense

Past Simple Tense

สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาพูดถึงเรื่อง Past Simple Tense ในภาษาอังกฤษ จะเป็นอย่างไรลองไปดูกันเลยดีกว่าครับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1