การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐

ตัวอย่างที่ 1

ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล

  • โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง

(โจทย์กำหนดข้อมูลมาให้ 2 ข้อมูล คือ 1) ในเข่งใบหนึ่งมีจำนวนมะม่วงและจำนวนมังคุด

รวมกันอยู่ 68 ผล และ 2) จำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล)

  • โจทย์ถามหาอะไร

(จำนวนมะม่วงและมังคุดในเข่ง)

  • สามารถนำความรู้เกี่ยวกับการแก้ระบบสมการมาใช้ในการแก้ปัญหานี้ได้อย่างไร

(ในการแก้ระบบสมการเชิงเส้นสองตัวแปร ต้องมีตัวแปรสองตัว นั่นคือควรกำหนดตัวแปร x

และตัวแปร y ก่อน)

  • กำหนดให้ตัวแปร x แทนข้อมูลใด

(ให้ x แทน จำนวนมะม่วง)

  • กำหนดให้ตัวแปร y แทนข้อมูลใด

(ให้ y แทน จำนวนมังคุด)

  • สร้างสมการได้อย่างไร

(จากข้อมูล 1) ในเข่งใบหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล

เขียนเป็นสัญลักษณ์ได้ว่า x + y = 68 และ 2) จำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล

เขียนเป็นสัญลักษณ์ได้ว่า y – x = 18)

  • สามารถแก้ระบบสมการหาค่า x และ y อย่างไร

จากระบบสมการ

x + y = 68          ———-(1)

y – x  = 18          ———-(2)

นำ  (1)  +  (2)  ;   2y  =  86

         y  =  86 ÷ 2

                                                  y  =  43

แทนค่า  y = 43 ในสมการ  (1) จะได้

x + 43 =  68

x  =  68 – 43

x  =  25

ดังนั้น  เข่งใบนี้มีมะม่วง 25 ผล และมังคุด 43 ผล

ตัวอย่างที่ 2

กระเป๋าใบบหนึ่งบรรจุเหรียญห้าบาทและเหรียญสิบบาท จำนวน 25 เหรียญ เป็นเงิน 180 บาท จงหาจำนวนของเหรียญแต่ละชนิด

วิธีทำ  ให้มีเหรียญสิบบาทเป็น x เหรียญ คิดเป็นเงิน  10x  บาท

และมีเหรียญห้าบาทเป็น y เหรียญ คิดเป็นเงิน  5y  บาท

จากโจทย์มีเหรียญจำนวน 25 เหรียญ

เขียนเป็นสมการได้เป็น                  x + y = 25                 ———-(1)

10x + 5y = 180              ———-(2)

(1) × 5 ;                                     5x + 5y = 125              ———-(3)

(2) – (3);                                     5x = 55

  x = 55 ÷ 5

                                                      x = 11

แทน x = 1 ในสมการ (1) จะได้     11 + y = 25

           y = 25 – 11 

                                                               y = 14

ดังนั้น มีเหรียญสิบบาท 11 เหรียญและเหรียญห้าบาท 14 เหรียญ

ตัวอย่างที่ 3

ลวดหนามขดหนึ่งยาว 84 เมตร นำไปล้อมรั้วรอบที่ดินรูปสี่เหลี่ยมผืนผ้า ที่มีด้านกว้างสั้นกว่าด้านยาว 6 เมตร
จงหาพื้นที่ของที่ดินแปลงนี้

วิธีทำ      ให้ด้านกว้างเท่ากับ x เมตร และด้านยาวเท่ากับ  y  เมตร

โจทย์กำหนดให้ด้านกว้างสั้นกว่าด้านยาว 6 เมตร

                    y – x = 6         —————(1)

และโจทย์กำหนดความยาวรอบสนามเท่ากับความยาวของลวดหนาม

2(x + y) = 84

x + y = 42       —————(2)

(1) + (2);                 2y = 48

    y = 48 ÷ 2

                                   y = 24

แทนค่า y = 24 ในสมการ (2) จะได้    x + 24 = 42

        x  = 42 – 24    

                                                                        x = 18

จะได้ พื้นที่สี่เหลี่ยมผืนผ้า = กว้าง × ยาว  =  xy   = 18 × 24 = 432 ตารางเมตร

ดังนั้น พื้นที่ที่ดินแปลงนี้ เท่ากับ  432 ตารางเมตร

ตัวอย่างที่ 4

มีจำนวนสองจำนวน จำนวนมากมากกว่าสองเท่าของจำนวนน้อยอยู่ 6 แต่สองเท่าของจำนวนมากมากกว่า
จำนวนน้อยอยู่ 30 จงหาจำนวนทั้งสองนั้น

วิธีทำ  ให้จำนวนมากเป็น  x  และจำนวนน้อยเป็น  y

โจทย์กำหนดจำนวนมากมากกว่าสองเท่าของจำนวนน้อยอยู่ 6

              x – 2y = 6            ————(1)

และโจทย์กำหนดสองเท่าของจำนวนมากมากกว่าจำนวนน้อยอยู่ 30

              2x – y = 30          ————(2)

(2) × 2 ;                  4x – 2y = 60          ————(3)

(3) – (1);                         3x = 54

x = 54 ÷ 3

x = 18

แทนค่า x = 18 ในสมการ (1) จะได้  18 – 2y = 6

                2y = 18 – 6

                                                                    2y = 12

                            y = 12 ÷ 2  

                                                                     y = 6

ดังนั้น จำนวนทั้งสองคือ 18 และ 6

ตัวอย่างที่ 5

มีผู้เข้าชมคอนเสิร์ต ที่ซื้อบัตรผ่านประตูจำนวน 610 คน เก็บเงินค่าผ่านประตูสองราคา คือ 100 บาท และ 50 บาท ปรากฏว่าเก็บเงินได้ 45,200 บาท ดังนั้น ขายบัตรราคา 100 บาท และ 50 บาท ไปได้อย่างละกี่ใบ

วิธีทำ  ให้ขายบัตรใบละ 100 บาท ได้ x ใบ และขายบัตรใบละ 50 บาท ได้ y ใบ

  มีผู้เข้าชมการแข่งขันฟุตบอลที่เสียเงินจำนวน 610 คน

  จะได้สมการ             x + y   =    610      ———-(1)

จะขายบัตรใบละ 100 บาท ได้เงิน 100x บาท

ขายบัตรใบละ 50 บาท ได้เงิน 50y บาท

จะขายบัตรได้เงิน 45,200 บาท

ดังนั้นจะได้สมการ  100x + 50y  =    45,200   ———-(2)

นำสมการ (1) คูณด้วย 50 จะได้

                                   50x + 50y    =    30,500  ———-(3)                       

นำสมการ (2) ลบด้วย สมการ (3) จะได้

                                    50x     =    14,700

                    x     =    14,700 ÷ 50

                                         x     =    294

แทนค่า x ด้วย 294 ใน (1) จะได้   294 + y    =  610

                                                                               y   =  610 – 294

y   =   316

ตอบ  ขายบัตรใบละ 100 บาท ได้ 294 ใบ และขายบัตรใบละ 50 บาท ได้ 316 ใบ

วิดีโอ การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กราฟแสดงคำตอบของอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้แนะนำการเขียน กราฟแสดงคำตอบของอสมการเชิงเส้นตัวแปรเดียว  ซึ่งจะเชื่อมโยงกับสัญลักษณ์ของอสมการทั้ง 5 สัญลักษณ์ คือ มากกว่า (>), น้อยกว่า (<), มากกว่าหรือเท่ากับ (≥), น้อยกว่าหรือเท่ากับ (≤) และ ไม่ท่ากับ(≠) โดยเขียนแสดงบนเส้นจำนวน จุดทึบและจุดโปร่ง เราจะเลือกใช้จุดทึบ (•) และจุดโปร่ง (°) แทนสัญลักษณ์อสมการ ดังนี้ มากกว่า

การเรียงคำคุณศัพท์ (Adjective Order)

น้องๆ น่าจะรู้จักหรือเคยได้ยิน “คำคุณศัพท์” หรือ Adjective ในภาษาอังกฤษกันมาบ้างแล้วใช่มั้ยครับ? ซึ่งหน้าที่ของคำเหล่านี้คือเพิ่มความหมายและบอกลักษณะของคำนามนั่นเอง วันนี้เราจะมาเรียนรู้กันว่าหากมี Adjective มากกว่า 1 คำมาขยายคำนาม เราจะเรียงลำดับมันอย่างไรดี ไปดูกันเลย!

ศึกษาที่มาของ ขัตติยพันธกรณี บทประพันธ์ที่มาจากเรื่องจริงในอดีต

ขัตติยพันธกรณี เป็นพระราชนิพนธ์ในรัชกาลที่ 5 มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ น้อง ๆ สงสัยกันไหมคะว่าเกี่ยวกับเรื่องไหน เหตุใดพระองค์จึงต้องพระราชนิพนธ์วรรณคดีเรื่องนี้ขึ้นมา เราไปหาคำตอบถึงที่มา ความสำคัญ และเนื้อเรื่องกันเลยค่ะ รับรองว่านอกจากจะได้ความรู้เกี่ยวกับบทประพันธ์แล้ว บทเรียนในวันนี้ยังมีเกร็ดความรู้ทางประวัติศาสตร์ให้น้อง ๆ อีกด้วยค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ที่มาของ ขัตติยพันธกรณี     ขัตติยพันธกรณีมีความหมายถึงเหตุอันเป็นข้อผูกพันของกษัตริย์ เป็นพระราชหัตถเลขาของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวและตอบกลับโดยสมเด็จกรมพระยาดำรงราชานุภาพ มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ ช่วง

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ จัดรูปใหม่ ได้เป็น (อ่านว่าล็อก x ฐาน

สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

NokAcademy_ม2 การใช้ Future Simple กับการตั้งคำถามด้วย Wh-Questions

การใช้ Future Simple กับการตั้งคำถามด้วย Wh-Questions

สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้ครูจะพาไปตะลุย “การใช้  Future Simple กับการตั้งคำถามด้วย Wh-Questions” หากพร้อมแล้วก็ไปลุยกันเลยจร้า Future Simple Tense     Future Simple Tense หรือ ประโยคอนาคตกาล เอาไว้พูดถึงเรื่องราวในอนาคต เช่น สิ่งที่ยังไม่เกิดขึ้น สิ่งที่จะเกิดขึ้น สิ่งที่จะทำ เป็นต้น

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1