การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐

ตัวอย่างที่ 1

ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล

  • โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง

(โจทย์กำหนดข้อมูลมาให้ 2 ข้อมูล คือ 1) ในเข่งใบหนึ่งมีจำนวนมะม่วงและจำนวนมังคุด

รวมกันอยู่ 68 ผล และ 2) จำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล)

  • โจทย์ถามหาอะไร

(จำนวนมะม่วงและมังคุดในเข่ง)

  • สามารถนำความรู้เกี่ยวกับการแก้ระบบสมการมาใช้ในการแก้ปัญหานี้ได้อย่างไร

(ในการแก้ระบบสมการเชิงเส้นสองตัวแปร ต้องมีตัวแปรสองตัว นั่นคือควรกำหนดตัวแปร x

และตัวแปร y ก่อน)

  • กำหนดให้ตัวแปร x แทนข้อมูลใด

(ให้ x แทน จำนวนมะม่วง)

  • กำหนดให้ตัวแปร y แทนข้อมูลใด

(ให้ y แทน จำนวนมังคุด)

  • สร้างสมการได้อย่างไร

(จากข้อมูล 1) ในเข่งใบหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล

เขียนเป็นสัญลักษณ์ได้ว่า x + y = 68 และ 2) จำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล

เขียนเป็นสัญลักษณ์ได้ว่า y – x = 18)

  • สามารถแก้ระบบสมการหาค่า x และ y อย่างไร

จากระบบสมการ

x + y = 68          ———-(1)

y – x  = 18          ———-(2)

นำ  (1)  +  (2)  ;   2y  =  86

         y  =  86 ÷ 2

                                                  y  =  43

แทนค่า  y = 43 ในสมการ  (1) จะได้

x + 43 =  68

x  =  68 – 43

x  =  25

ดังนั้น  เข่งใบนี้มีมะม่วง 25 ผล และมังคุด 43 ผล

ตัวอย่างที่ 2

กระเป๋าใบบหนึ่งบรรจุเหรียญห้าบาทและเหรียญสิบบาท จำนวน 25 เหรียญ เป็นเงิน 180 บาท จงหาจำนวนของเหรียญแต่ละชนิด

วิธีทำ  ให้มีเหรียญสิบบาทเป็น x เหรียญ คิดเป็นเงิน  10x  บาท

และมีเหรียญห้าบาทเป็น y เหรียญ คิดเป็นเงิน  5y  บาท

จากโจทย์มีเหรียญจำนวน 25 เหรียญ

เขียนเป็นสมการได้เป็น                  x + y = 25                 ———-(1)

10x + 5y = 180              ———-(2)

(1) × 5 ;                                     5x + 5y = 125              ———-(3)

(2) – (3);                                     5x = 55

  x = 55 ÷ 5

                                                      x = 11

แทน x = 1 ในสมการ (1) จะได้     11 + y = 25

           y = 25 – 11 

                                                               y = 14

ดังนั้น มีเหรียญสิบบาท 11 เหรียญและเหรียญห้าบาท 14 เหรียญ

ตัวอย่างที่ 3

ลวดหนามขดหนึ่งยาว 84 เมตร นำไปล้อมรั้วรอบที่ดินรูปสี่เหลี่ยมผืนผ้า ที่มีด้านกว้างสั้นกว่าด้านยาว 6 เมตร
จงหาพื้นที่ของที่ดินแปลงนี้

วิธีทำ      ให้ด้านกว้างเท่ากับ x เมตร และด้านยาวเท่ากับ  y  เมตร

โจทย์กำหนดให้ด้านกว้างสั้นกว่าด้านยาว 6 เมตร

                    y – x = 6         —————(1)

และโจทย์กำหนดความยาวรอบสนามเท่ากับความยาวของลวดหนาม

2(x + y) = 84

x + y = 42       —————(2)

(1) + (2);                 2y = 48

    y = 48 ÷ 2

                                   y = 24

แทนค่า y = 24 ในสมการ (2) จะได้    x + 24 = 42

        x  = 42 – 24    

                                                                        x = 18

จะได้ พื้นที่สี่เหลี่ยมผืนผ้า = กว้าง × ยาว  =  xy   = 18 × 24 = 432 ตารางเมตร

ดังนั้น พื้นที่ที่ดินแปลงนี้ เท่ากับ  432 ตารางเมตร

ตัวอย่างที่ 4

มีจำนวนสองจำนวน จำนวนมากมากกว่าสองเท่าของจำนวนน้อยอยู่ 6 แต่สองเท่าของจำนวนมากมากกว่า
จำนวนน้อยอยู่ 30 จงหาจำนวนทั้งสองนั้น

วิธีทำ  ให้จำนวนมากเป็น  x  และจำนวนน้อยเป็น  y

โจทย์กำหนดจำนวนมากมากกว่าสองเท่าของจำนวนน้อยอยู่ 6

              x – 2y = 6            ————(1)

และโจทย์กำหนดสองเท่าของจำนวนมากมากกว่าจำนวนน้อยอยู่ 30

              2x – y = 30          ————(2)

(2) × 2 ;                  4x – 2y = 60          ————(3)

(3) – (1);                         3x = 54

x = 54 ÷ 3

x = 18

แทนค่า x = 18 ในสมการ (1) จะได้  18 – 2y = 6

                2y = 18 – 6

                                                                    2y = 12

                            y = 12 ÷ 2  

                                                                     y = 6

ดังนั้น จำนวนทั้งสองคือ 18 และ 6

ตัวอย่างที่ 5

มีผู้เข้าชมคอนเสิร์ต ที่ซื้อบัตรผ่านประตูจำนวน 610 คน เก็บเงินค่าผ่านประตูสองราคา คือ 100 บาท และ 50 บาท ปรากฏว่าเก็บเงินได้ 45,200 บาท ดังนั้น ขายบัตรราคา 100 บาท และ 50 บาท ไปได้อย่างละกี่ใบ

วิธีทำ  ให้ขายบัตรใบละ 100 บาท ได้ x ใบ และขายบัตรใบละ 50 บาท ได้ y ใบ

  มีผู้เข้าชมการแข่งขันฟุตบอลที่เสียเงินจำนวน 610 คน

  จะได้สมการ             x + y   =    610      ———-(1)

จะขายบัตรใบละ 100 บาท ได้เงิน 100x บาท

ขายบัตรใบละ 50 บาท ได้เงิน 50y บาท

จะขายบัตรได้เงิน 45,200 บาท

ดังนั้นจะได้สมการ  100x + 50y  =    45,200   ———-(2)

นำสมการ (1) คูณด้วย 50 จะได้

                                   50x + 50y    =    30,500  ———-(3)                       

นำสมการ (2) ลบด้วย สมการ (3) จะได้

                                    50x     =    14,700

                    x     =    14,700 ÷ 50

                                         x     =    294

แทนค่า x ด้วย 294 ใน (1) จะได้   294 + y    =  610

                                                                               y   =  610 – 294

y   =   316

ตอบ  ขายบัตรใบละ 100 บาท ได้ 294 ใบ และขายบัตรใบละ 50 บาท ได้ 316 ใบ

วิดีโอ การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Quantity words

การใช้ Quantity words เช่น many/ much/ a lot of/ lots of and etc.

Hi guys! สวัสดีค่ะนักเรียนชั้นม.2 ทุกคนวันนี้เราจะไปเรียนรู้ “การใช้ Quantity words เช่น many/ much/ a lot of/ lots of and etc. ” ในภาษาอังกฤษกันค่ะ Let’s go! ไปลุยกันโลด Quantity words คืออะไร

การหารเลขยกกำลัง

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก บทความนี้ ได้รวบรวมตัวอย่าง การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการหารของเลขยกกำลัง ก่อนจะเรียนรู้ ตัวอย่างการหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก น้องๆจำเป็นต้องมีความรู้ในเรื่อง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ⇐⇐ สมบัติของการหารเลขยกกำลัง  am ÷ an  = am – n     (ถ้าเลขยกกำลังฐานเหมือนกันหารกัน ให้นำเลขชี้กำลังมาลบกัน)

กลอนสุภาพ แต่งอย่างไรให้ไพเราะ

กลอนสุภาพ เป็นคำประพันธ์ที่หลาย ๆ คนคงจะรู้จักกันดีเพราะพบเจอในวรรณคดีได้ง่าย ใช้กันอย่างแผ่หลาย บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนมาสวมบทนักกวี ฝึกแต่งกลอนสุภาพกันอย่างง่าย ๆ จะมีวิธีและรูปฉันทลักษณ์อย่างไร ไปดูกันเลยค่ะ   ความรู้ทั่วไปเที่ยวกับกลอนสุภาพ   กลอนสุภาพ หมายถึง กลอนเพลงยาว บางครั้งเรียก กลอนแปด กลอนตลาด กลอนสุภาพ เป็นกลอนประเภทหนึ่งที่เรียบเรียงเข้าเป็นคณะ ใช้ถ้อยคำและทำนองเรียบ ๆ

ที่มาและเรื่องย่อของวรรณคดียิ่งใหญ่ตลอดกาล รามเกียรติ์ ตอน ศึกไมยราพ

นับตั้งแต่สมัยกรุงศรีอยุธยา มีผู้นำรามเกียรติ์มาแต่งมากมายหลายฉบับ ด้วยเนื้อหาที่เข้มข้นและสนุกเกินบรรยาย แต่ฉบับที่สมบูรณ์ที่สุดคือฉบับที่ประพันธ์โดยสมเด็จพระพุทธยอดฟ้าจุฬาโลก หรือก็คือรัชกาลที่ 1 นั่นเองค่ะ รามเกียรติ์ฉบับนี้มีความพิเศษและมีจุดประสงค์ที่ต่างจากฉบับก่อนหน้า บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงพระปรีชาสามารถของรัชกาลที่ 1 ผ่านความเป็นมาของวรรณคดีรวมไปถึงเรื่องย่อในตอนสำคัญอย่างตอน ศึกไมยราพ กันค่ะ ไปดูพร้อมกันเลยค่ะว่า รามเกียรติ์ ตอน ศึกไมยราพ จะสนุกแค่ไหน   ประวัติความเป็นมา     รามเกียรติ์

ปก short answer questions

Short question and Short answer

  สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้ครูจะพาไปตะลุยตัวอย่างและวิธีการแต่งประโยคคำถาม ของเรื่อง “Short question and Short answer“ การถามตอบคำถามแบบสั้น หากพร้อมแล้วก็ไปลุยกันเลยจร้า   ความหมาย Short question and Sho rt answer คือการถามตอบแบบสั้นหรือส่วนใหญ่แล้วมักขึ้นต้นคำถามด้วยกริยาช่วย และได้คำตอบขนาดสั้น เช่น Yes, I

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1