การแก้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐

ให้ a, b, c, d, e และ f เป็นจำนวนจริงใดๆ ที่ a,b ไม่เป็นศูนย์บร้อมกัน และ c,d ไม่เป็นศูนย์บร้อมกัน เรียกระบบที่ประกอบด้วยสมการ

ax +by =c

cx + dy = f

ว่า ระบบสมการเชิงเส้นสองตัวแปร ซึ่งคำตอบของระบบสมการเชิงเส้นสองตัวแปร คือ คู่อันดับ (x,y) ที่ค่า x และ ค่า y ทำให้สมการทั้งสองของระบบสมการเป็นจริง

ตัวอย่างที่ 1 

ตัวอย่างที่ 1  จงแก้ระบบสมการ

x + y = 50

2x + 4y = 140

วิธีทำ   x + y = 50             ———(1)

  2x + 4y = 140      ———(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร x โดยการทำสัมประสิทธิ์ของตัวแปร x ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร x ในสมการ(1) เท่ากับ 1 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ 2 ดังนั้น นำสมการ (1) × 2 เพื่อให้สัมประสิทธิ์ของตัวแปร x เท่ากับ 2

(1) × 2 ;     2x + 2y = 100      ———(3)

เมื่อสัมประสิทธิ์ของตัวแปร x เท่ากันแล้ว กำจัดตัวแปร x เพื่อหาค่า y โดยการนำ สมการ (2) – (3)

(2) – (3) ;  (2x + 4y) – (2x + 2y) = 140 – 100

      2x + 4y – 2x – 2y = 40

          2y = 40

                                           y = 40 ÷ 2

  y = 20

หาค่า x โดยแทน y ด้วย 20 ในสมการที่ (1) จะได้

        x + y = 50

                                   x + 20 = 50

                                           x  = 50 – 20    

 x  = 30

ตรวจสอบ     แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (1) จะได้

x + y = 30 + 20 = 50  เป็นจริง

แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (2) จะได้

2x + 4y = 2(30) + 4(20) =  60 + 80 = 140  เป็นจริง

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

นอกจากวิธีการดังกล่าวแล้ว ยังสามารถใช้วิธีการแทนค่า ได้ดังนี้

วิธีทำ     x + y = 50            ———(1)

2x + 4y = 140          ———(2)

จากสมการ (1) ให้จัดรูปใหม่ โดยให้ตัวแปร x อยู่ทางซ้ายของเครื่องหมายเท่ากับ เพียงตัวเดียว

จาก (1);    x = 50 –  y     ———(3)

แทน x ด้วย 50 – y ใน (2) จะได้

2x + 4y = 140

        2(50 – y) + 4y = 140

                              100 – 2y + 4y = 140

        2y = 140 – 100

        2y = 40

          y = 40 ÷ 2

          y = 20

แทน y ด้วย 20 ใน (3) จะได้

x = 50 –  y

                                        x = 50 – 20

                                        x = 30

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

ตัวอย่างที่ 2

ตัวอย่างที่ 2  จงแก้ระบบสมการ

3x + 4y = 27   ——-(1)

2x – 3y = 1     ——-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 4 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 4 และ 3 คือ 4 × 3 = 12 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 12

(1) × 3;      9x + 12y = 81   ——-(3)

(2) × 4;      8x – 12y = 4     ——-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 12 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -12 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)

(3) + (4);    (9x + 12y) + (8x – 12y) = 81 + 4

    17x = 85

                                                           x = 85 ÷ 17

       x = 5

หาค่า y โดยแทนค่า x = 5 ในสมการที่ (1) จะได้

    3x + 4y = 27

                     3(5) + 4y = 27

  4y = 27 – 15

  4y = 12

    y = 4 ÷ 3

    y = 3

ตรวจสอบ     แทนค่า x = 5  และ y = 3 ในสมการ (1) จะได้

3(5) + 4(3) = 15 + 12 = 27   เป็นจริง

แทนค่า x = 5  และ y = 3 ในสมการ (2) จะได้

2(5) – 3(3) = 10 – 9 = 1   เป็นจริง

ดังนั้น คำตอบของระบบสมการ คือ (5,3)

ตัวอย่างที่ 3

ตัวอย่างที่ 3  จงแก้ระบบสมการ

3x + 2y = 16
2x – 3y = 2

วิธีทำ

3x + 2y = 16 ———-(1)
2x – 3y = 2 ———-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 2 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 2 และ 3 คือ 2 × 3 = 6 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 6
(1)×3;   9x + 6y = 48 ———-(3)
(2)×2;   4x – 6y = 4 ———-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 6 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -6 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)
(3) + (4);  (9x + 6y) + (4x – 6y) = 48 + 4

13x = 52

    x = 52 ÷ 13

                         x = 4

หาค่า y โดยแทน x ด้วย 4 ในสมการ (1) จะได้

  3x + 2y = 16

3(4) + 2y = 16

   12 + 2y = 16

            2y = 16 – 12

            2y = 4

            y = 2

ตรวจสอบ แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (1) จะได้
3(4) + 2(2) = 12 + 4 = 16 เป็นจริง
แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (2) จะได้
2(4) – 3(2) = 8 – 6 = 2 เป็นจริง
ดังนั้น คำตอบของระบบสมการ คือ (4,2)

คลิปวิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

มารยาทในการอ่านที่นักอ่านทุกคนควรรู้

บทเรียนวันนี้เป็นเรื่องง่าย ๆ ที่มักจะถูกละเลย มองข้ามไป นั่นก็คือเรื่องมารยาทในการอ่านนั่นเองค่ะ น้อง ๆ หลายคนคงสงสัยว่ามารยาทในการอ่านนั้นสำคัญอย่างไร ทำไมเราถึงต้องเรียนรู้เรื่องนี้เช่นเดียวกับมารยาทในการฟังและมารยาทในการพูดด้วย เราไปเรียนรู้เรื่องนี้ไปพร้อม ๆ เลยดีกว่าค่ะ มารยาทในการอ่าน   ความหมายของมารยาทในการอ่าน มารยาท หมายถึง กิริยาวาจาที่ถือว่าสุภาพเรียบร้อยถูกกาลเทศะ ส่วนการอ่าน หมายถึง พฤติกรรมการรับสารอย่างหนึ่ง รับรู้เรื่องราวโดยการใช้ตามองแล้วใช้สมองประมวลผลข้อมูลต่าง ๆ เกิดเป็นการรับรู้และความเข้าใจ มารยาทในการอ่านจึงหมายถึง

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ   ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

วิชชุมมาลาฉันท์

เรียนรู้การแต่ง วิชชุมมาลาฉันท์ 8 ฉันท์ที่เปล่งสำเนียงยาวดุจสายฟ้า

ฉันท์ คือ ลักษณะถ้อยคำที่กวีได้ประพันธ์ขึ้นเพื่อให้เกิดความไพเราะ โดยกำหนดครุ ลหุ และสัมผัสไว้เป็นมาตรฐาน มีด้วยกันมากมายหลายชนิด จากที่บทเรียนครั้งก่อนเราได้เรียนรู้เกี่ยวกับที่มาและพื้นฐานการแต่งฉันท์ไปแล้ว บทเรียนในวันนี้เราจะมาเจาะลึกให้ลึกขึ้นไปอีกด้วยการฝึกแต่ง วิชชุมมาลาฉันท์ 8 กันค่ะ ฉันท์ประเภทนี้จะเป็นอย่างไร ทำไมถึงเป็น 8  ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำประพันธ์ประเภท ฉันท์   ฉันท์ในภาษาไทยได้แบบแผนมาจากอินเดีย ในสมัยพระเวท แต่ลักษณะฉันท์ในสมัยพระเวทไม่เคร่งครัดเรื่องครุ ลหุ นอกจากจะบังคับเรื่องจำนวนคำในแต่ละบท

M5 การใช้ Phrasal Verbs

การใช้ Phrasal Verbs

สวัสดีค่ะนักเรียนชั้นม.5 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง ” การใช้ Phrasal Verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด Phrasal Verbs คืออะไร   Phrasal Verbs คือ คำกริยา โดยเป็นกริยาที่มีคำอื่นๆ อย่างเช่น คำบุพบท (Preposition) ร่วมกันส่วนใหญ่แล้ว Phrasal Verbs จะบอกถึงการกระทำ มักจะเจอในชีวิตประจำวันในสถานการณ์ทั่วไป

โจทย์ปัญหาแผนภูมิรูปวงกลม

ในบทความนี้เราจะได้เรียนรู้หลักการแก้โจทย์ปัญหาแผนภูมิรูปวงกลมที่จะนำไปใช้ได้ในชีวิตประจำวนและสามารถเข้าใจได้ง่าย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1