ตัวคูณร่วมน้อย (ค.ร.น.)

ตัวคูณร่วมน้อย(ค.ร.น.) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น
ตัวคูณร่วมน้อย (ค.ร.น.)

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ตัวคูณร่วมน้อย (ค.ร.น.)

น้องๆ ทราบหรือไม่ว่า การหาตัวคูณร่วมน้อย (ค.ร.น.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น เป็นการหาตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น บทความนี้ได้รวบรวม ตัวอย่าง ค.ร.น. พร้อมทั้งแสดงวิธีทำอย่างละเอียด โดยมีวิธี การหา ค.ร.น. ทั้งหมด 3 วิธี ดังนี้

  1. การหา ค.ร.น. โดยการหาผลคูณร่วม
  2. การหา ค.ร.น. โดยการแยกตัวประกอบ
  3. การหา ค.ร.น. โดยการหาร (หารสั้น)

        ก่อนอื่นที่จะไปเรียนรู้วิธี การหา ค.ร.น. ทั้ง 3 แบบนั้น น้องๆมาทำความรู้จักกับตัวคูณร่วมน้อย(ค.ร.น.) กันก่อนนะคะ

        ตัวคูณร่วมน้อย(ค.ร.น.) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น

        ก่อนที่จะไปเรียนรู้วิธี การหา ค.ร.น. วิธีแรกนั้น น้องๆจำเป็นต้องศึกษาและแยกแยะความแตกต่างระหว่างการหาตัวประกอบและพหุคูณของจำนวนนับใดๆ 

         น้องๆ ลองท่องสูตรคูณแม่ 2 หน่อยค่ะ จะได้ ตัวเลขที่เรียงกันในรูปแบบด้านล่าง

                            2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , …

          สังเกตได้ว่าจำนวนซึ่งเป็นสูตรคูณของแม่  2  แต่ละจำนวนนั้น  คือ  พหุคูณของ  2  และเขียนว่า “ พหุคูณของ  2 ”  ดังนี้

                           2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , …              เป็นพหุคูณของ  2

              สังเกตพหุคูณของ  2  ว่าจำนวนใดที่สามารถหารทุกจำนวนได้ลงตัว  จะได้ว่า  2  เป็นจำนวนที่หารพหุคูณของ  2  ได้ลงตัวทุกจำนวน สรุปได้ว่า  พหูคูณของ  2  คือ  จำนวนที่มี  2  เป็นตัวประกอบ

              ในทำนองเดียวกัน ถ้าท่องสูตรคูณแม่  3  และ  4  สังเกตว่ามีลักษณะเดียวกันกับสูตรคูณของแม่  2  

                        3 , 6 , 9 , 12  , 15 , 18 , 21 , 24 , 27 , 30 , 33 , 36  …              เป็นพหุคูณของ  3  

                        4 , 8 , 12 , 16  , 20 , 24 , 28 , 32 , 36 , 40 , 44 , 48  …           เป็นพหุคูณของ  4

              เมื่อน้องๆรู้จักพหุคูณของจำนวนแต่ละจำนวนแล้ว ต่อไปมาทำความรู้จักพหุคูณร่วม และตัวประกอบของจำนวนนับใดๆ  โดยศึกษาจากโจทย์ต่อไปนี้

  1. ตัวประกอบของ 3 คือ 1 และ 3                                                                                           พหุคูณของ 3  คือ 3, 6, 9, 12, …
  1. ตัวประกอบของ 4 คือ 1, 2 และ 4                                                                                       พหุคูณของ 4 คือ 4, 8, 16, 20, …
  1. ตัวประกอบของ 5  คือ 1 และ 5                                                                                          พหุคูณของ  5  คือ 5, 10, 15, 20, …

          เมื่อศึกษาครบทั้ง 3 ข้อแล้ว สามารถสรุปความหมายของ ตัวตั้งร่วมหรือพหุคูณร่วมของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป ซึ่งหมายถึง จำนวนนับใด ๆ ที่หารด้วยจำนวนนับนั้นลงตัวทุกจำนวน

          พหุคูณร่วมของจำนวนนับที่มีค่าน้อยที่สุด เรียกว่า ตัวคูณร่วมที่น้อยที่สุด หรือ ค.ร.น. ต่อไปมาดูนิยามเกี่ยวกับ ค.ร.น. กันนะคะ

ลำดับถัดไปจะนำน้องๆ ไปศึกษาวิธี การหา ค.ร.น. ทั้ง 3 วิธี ถ้าพร้อมแล้วมาเริ่มวิธีแรกกันเลยนะคะ

วิธีที่ 1 การหา ค.ร.น. โดยการหาผลคูณร่วม

หลักการ

  1. หาตัวตั้งหรือพหุคูณของจำนวนนับที่ต้องการหา ค.ร.น.
  2. พิจารณาตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุด
  3. ค.ร.น. คือ ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุด

เมื่อศึกษาหลักการหา ค.ร.น. โดยการหาผลคูณร่วม เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 1 จงหา ค.ร.น. ของ 2 และ 3                                                               

วิธีทำ พหุคูณของ 2   คือ  2, 4, 6, 8, 10, 12, 14, 16, 18, …                                                           

พหุคูณของ 3   คือ  3, 6, 9, 12, 15, 18, 21, 24, …                                                               

เรียก 6, 12, 18, … เป็นพหุคูณร่วมของ 2 และ 3                                                                     

พหุคูณที่น้อยที่สุดของ 2 และ 3  เรียกว่า ตัวคูณร่วมที่น้อยที่สุด ซึ่งเขียนย่อๆ  ว่า  ค.ร.น.

ดังนั้น  ค.ร.น. ของ 2 และ 3  คือ 6

ตัวอย่างที่ 2   จงหา ค.ร.น. ของ 2, 3  และ 4

วิธีทำ พหุคูณของ 2 คือ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, …

พหุคูณของ 3 คือ 3,  6,  9,  12,  15,  18,  21, 24, 27, …

พหุคูณของ 4  คือ  4,  8,  12,  16, 20,  24, 28, …

เพราะฉะนั้น พหุคูณร่วมของ 2, 3 และ 4 คือ 12 และ 24

นั่นคือ 12 เป็นพหุคูณร่วมที่น้อยที่สุดของ  2, 3 และ 4

ดังนั้น ค.ร.น. ของ 2, 3  และ  4  คือ  12

การหา ค.ร.น. โดยใช้วิธีที่ 1 ง่ายมากเลยใช่มั้ยค่ะ ต่อไปน้องๆ มาศึกษาวิธี การหา ค.ร.น. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 2 การหา ค.ร.น. โดยการแยกตัวประกอบ

หลักการ

  1. แยกตัวประกอบทั้งหมดของจำนวนนับที่ต้องการหา ค.ร.น. 
  2. พิจารณาตัวประกอบเฉพาะที่เป็นตัวประกอบร่วมของจำนวนนับที่จะหา ค.ร.น.
  3. พิจารณาตัวประกอบเฉพาะเดี่ยว ๆ
  4. นำตัวประกอบเฉพาะที่ได้จากข้อ 2. ทั้งหมด และข้อ 3. ทั้งหมด มาคูณกัน
  5. ค.ร.น. คือ ผลคูณในข้อ 4.

ตัวอย่างที่ 3  จงหา ค.ร.น. ของ  24  และ 32

ตัวอย่างที่  4   จงหา ค.ร.น. ของ 6, 10  และ 12

หมายเหตุ : จำนวนนับที่นำมาหา ค.ร.น. ถ้ามี 3 จำนวน ให้นำตัวซ้ำกัน 3 ตัวมา 1 ตัว และซ้ำกัน 2 ตัวมา  1 ตัว มาคูณกัน และคูณกับตัวที่เหลือที่ไม่ได้ซ้ำ ดังตัวอย่างข้างต้น  

จะดีกว่ามั้ยคะ ถ้ามีวิธีการที่จะสามารถหา ค.ร.น. ได้รวดเร็วยิ่งขึ้น แต่ทั้งนี้ทั้งนั้นขึ้นอยู่กับความถนัดของแต่ละบุคคลนะคะ น้องๆ ลองศึกษาวิธีสุดท้ายได้โดยใช้วิธีที่ 1 ง่ายมากเลยใช่มั้ยค่ะ ต่อไปน้องๆ มาศึกษาวิธี การหา ค.ร.น. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 3 การหา ค.ร.น. โดยการหาร (หารสั้น)   

หลักการ

  1. ในแต่ละขั้นตอนของการหาร จะต้องเลือกตัวหาร โดยเลือกจากจำนวนเฉพาะที่เป็นตัวประกอบร่วมอย่างน้อยสองจำนวน ซึ่งอาจมีหลายจำนวน ให้เลือกจำนวนใดไปหารก่อนก็ได้
  2. นำตัวหารที่ได้จากข้อ 1. มาหาร
  3. หารต่อไปเรื่อย ๆ จนกระทั่งไม่มีจำนวนเฉพาะที่เป็นตัวประกอบร่วมของสองจำนวนใด ๆ 
  4. ค.ร.น. คือ ผลคูณของจำนวนเฉพาะที่นำไปหารในแต่ละขั้นตอน และจำนวนที่เหลือจากการหารทั้งหมด

ตัวอย่างที่ 5 จงหา ค.ร.น. ของ 18, 24 และ 48

วิธีทำ        2) 18         24            48

3)  9        12         24

2) 3          4           8

2)  3          2           4

    3          1            2

ดังนั้น ค.ร.น. ของ 18, 24 และ 48 คือ 2 x 3 x 2 x 2 x 3 x 1 x 2 = 144

ตัวอย่างที่ 6 จงหา ค.ร.น. ของ 30, 18 และ 20                                 

วิธีทำ              2 )30    18     20    

5 )15      9     10

3 )  3     9      2

      1     3      2

ดังนั้น  ค.ร.น.  ของ   30, 18 และ 20  คือ  2 x 5 x 3 x 1 x 3 x 2 = 180

ตัวอย่างที่ 7 จงหา ค.ร.น. ของ 40, 48 และ 18

วิธีทำ          2 )40    48      18    

2 )20    24       9

3 )10    12       9

2 )10      4       3

     5      2       3

ดังนั้น  ค.ร.น.  ของ   40, 48 และ 18  คือ 2 x 2 x 3 x 2 x 5 x 2 x 3 = 720

ตัวอย่างเพิ่มเติม

ตัวอย่างที่ 8 จงหา ค.ร.น. ของ 13 และ 29

วิธีทำ  เนื่องจาก  13  เป็นจำนวนเฉพาะ  และ 13 หาร 29 ไม่ลงตัว

   จะได้ว่า  พหุคูณร่วมที่น้อยที่สุดของ  13 หาร 29 คือ 13 x 29 = 377

ดังนั้น ค.ร.น.  ของ  13  และ  29 คือ  377

ตัวอย่างที่ 9 จงหา ค.ร.น. ของ 53 และ 69

 วิธีทำ  เนื่องจาก  53  เป็นจำนวนเฉพาะ  และ 53 หาร 69 ไม่ลงตัว

   จะได้ว่า  พหุคูณร่วมที่น้อยที่สุดของ  53 หาร 69  คือ 53 x 69 = 3,657

ดังนั้น ค.ร.น.  ของ  53  และ  69 คือ  3,657

เมื่อน้องๆเรียนรู้เรื่อง ตัวคูณร่วมน้อย (ค.ร.น.) จาก ตัวอย่าง ค.ร.น. หลายๆตัวอย่าง จะเห็นได้ชัดว่า การหา ค.ร.น. ไม่ได้เป็นเรื่องยากอย่างที่คิด ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น. ซึ่งจะเป็นการฝึกน้องๆได้การวิเคราะห์โจทย์และเลือกใช้วิธีการแก้ปัญหาของโจทย์แต่ละข้อได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การหา ค.ร.น.

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา ตัวคูณร่วมน้อย (ค.ร.น.) ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค การหา ค.ร.น. รวมถึงการอธิบาย ตัวอย่าง ค.ร.น. และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

พระบรมราโชวาท จดหมายของร.5ที่เขียนถึงพระโอรส

พระบรมราโชวาท เป็นจดหมายร้อยแก้วที่พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวได้เขียนให้พระโอรสทั้ง 4 พระองค์ก่อนจะไปศึกษาต่างประเทศ เหตุใดเนื้อความในจดหมายถึงกลายเป็นวรรณคดีอันทรงคุณค่าให้คนรุ่นหลังได้ศึกษา บทเรียนในวันนี้จะพาไปเรียนรู้ประวัติความเป็นมาและเนื้อหาโดยรวมของเนื้อความเพื่อให้เข้าใจถึงคำสอนและข้อคิดจากพระบรมราโชวาทของพระมหากษัตริย์ในแง่มุมของพ่อสอนลูก จะเป็นอย่างไรไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ประวัติความเป็นมา     วรรณคดีเรื่องพระบรมราโชวาท เป็นคำสั่งสอนของรัชกาลที่ 5 พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวที่มีต่อพระราชโอรสทั้ง 4 พระองค์ที่กำลังจะเดินทางไปศึกษาต่อต่างประเทศ พระองค์จึงมีพระบรมราโชวาทเพื่อสั่งสอนและตักเตือนพระราชโอรส ซึ่งในการส่งไปศึกษาต่อในครั้งนี้ พระองค์ทรงเล็งเห็นว่า การศึกษาเป็นรากฐานของการพัฒนาประชาชนและประเทศชาติ    

หลักการใช้ Simple Present Tense+ Present Continuous Tense

สวัสดีนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง” หลักการใช้ Simple Present Tense+ Present Continuous Tense” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว และเทคนิคการจำและนำ Tense ไปใช้กันจร้า ซึ่ง Simple Present Tenseและ Present Continuous Tense นั้นมีสิ่งที่เหมือนกันคือ อยู่ในรูปปัจจุบัน (Present) เหมือนกัน

หลักการของอัตราส่วนที่เท่ากัน

หลักการของอัตราส่วนที่เท่ากัน

ในบทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

ภาษาเขมรในภาษาไทย เรียนรู้ความเป็นมาและลักษณะภาษา

ภาษาเขมร เป็นภาษาประจำชาติของประเทศกัมพูชา และยังเป็นภาษาที่คนไทยเชื้อสายเขมรใช้พูดกันอีกด้วย แต่นอกจากนั้นแล้ว น้อง ๆ ทราบไหมคะว่ายังมีคำที่มาจากภาษาเขมรปนอยู่ในชีวิตเรามากมายเลยทีเดียว เรียกได้ว่าถ้าหากภาษาบาลีสันสกฤตเป็นภาษาต่างประเทศที่ถูกหยิบยืมมาปรับใช้ในภาษาไทยมากที่สุดแล้ว ภาษาเขมรก็ถือว่าตามมาติด ๆ เลยทีเดียวค่ะ เหตุใดจึงเป็นเช่นนั้น แล้วคำไหนบ้างที่มาจากภาษาเขมร มีวิธีสังเกตอย่างไร ถ้าน้อง ๆ พร้อมแล้ว ไปเรียนรู้เรื่อง ภาษาเขมรในภาษาไทย พร้อมกันเลยค่ะ   จุดเริ่มต้นของภาษาเขมรในภาษาไทย     เนื่องจากเขตประเทศที่อยู่ติดกัน

การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

เมทริกซ์

เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์ เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร ตัวอย่างการเขียนเมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก และจากเมทริกซ์ข้างต้นจะได้ว่า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1