ตัวคูณร่วมน้อย (ค.ร.น.)

ตัวคูณร่วมน้อย(ค.ร.น.) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น
ตัวคูณร่วมน้อย (ค.ร.น.)

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ตัวคูณร่วมน้อย (ค.ร.น.)

น้องๆ ทราบหรือไม่ว่า การหาตัวคูณร่วมน้อย (ค.ร.น.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น เป็นการหาตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น บทความนี้ได้รวบรวม ตัวอย่าง ค.ร.น. พร้อมทั้งแสดงวิธีทำอย่างละเอียด โดยมีวิธี การหา ค.ร.น. ทั้งหมด 3 วิธี ดังนี้

  1. การหา ค.ร.น. โดยการหาผลคูณร่วม
  2. การหา ค.ร.น. โดยการแยกตัวประกอบ
  3. การหา ค.ร.น. โดยการหาร (หารสั้น)

        ก่อนอื่นที่จะไปเรียนรู้วิธี การหา ค.ร.น. ทั้ง 3 แบบนั้น น้องๆมาทำความรู้จักกับตัวคูณร่วมน้อย(ค.ร.น.) กันก่อนนะคะ

        ตัวคูณร่วมน้อย(ค.ร.น.) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น

        ก่อนที่จะไปเรียนรู้วิธี การหา ค.ร.น. วิธีแรกนั้น น้องๆจำเป็นต้องศึกษาและแยกแยะความแตกต่างระหว่างการหาตัวประกอบและพหุคูณของจำนวนนับใดๆ 

         น้องๆ ลองท่องสูตรคูณแม่ 2 หน่อยค่ะ จะได้ ตัวเลขที่เรียงกันในรูปแบบด้านล่าง

                            2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , …

          สังเกตได้ว่าจำนวนซึ่งเป็นสูตรคูณของแม่  2  แต่ละจำนวนนั้น  คือ  พหุคูณของ  2  และเขียนว่า “ พหุคูณของ  2 ”  ดังนี้

                           2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , …              เป็นพหุคูณของ  2

              สังเกตพหุคูณของ  2  ว่าจำนวนใดที่สามารถหารทุกจำนวนได้ลงตัว  จะได้ว่า  2  เป็นจำนวนที่หารพหุคูณของ  2  ได้ลงตัวทุกจำนวน สรุปได้ว่า  พหูคูณของ  2  คือ  จำนวนที่มี  2  เป็นตัวประกอบ

              ในทำนองเดียวกัน ถ้าท่องสูตรคูณแม่  3  และ  4  สังเกตว่ามีลักษณะเดียวกันกับสูตรคูณของแม่  2  

                        3 , 6 , 9 , 12  , 15 , 18 , 21 , 24 , 27 , 30 , 33 , 36  …              เป็นพหุคูณของ  3  

                        4 , 8 , 12 , 16  , 20 , 24 , 28 , 32 , 36 , 40 , 44 , 48  …           เป็นพหุคูณของ  4

              เมื่อน้องๆรู้จักพหุคูณของจำนวนแต่ละจำนวนแล้ว ต่อไปมาทำความรู้จักพหุคูณร่วม และตัวประกอบของจำนวนนับใดๆ  โดยศึกษาจากโจทย์ต่อไปนี้

  1. ตัวประกอบของ 3 คือ 1 และ 3                                                                                           พหุคูณของ 3  คือ 3, 6, 9, 12, …
  1. ตัวประกอบของ 4 คือ 1, 2 และ 4                                                                                       พหุคูณของ 4 คือ 4, 8, 16, 20, …
  1. ตัวประกอบของ 5  คือ 1 และ 5                                                                                          พหุคูณของ  5  คือ 5, 10, 15, 20, …

          เมื่อศึกษาครบทั้ง 3 ข้อแล้ว สามารถสรุปความหมายของ ตัวตั้งร่วมหรือพหุคูณร่วมของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป ซึ่งหมายถึง จำนวนนับใด ๆ ที่หารด้วยจำนวนนับนั้นลงตัวทุกจำนวน

          พหุคูณร่วมของจำนวนนับที่มีค่าน้อยที่สุด เรียกว่า ตัวคูณร่วมที่น้อยที่สุด หรือ ค.ร.น. ต่อไปมาดูนิยามเกี่ยวกับ ค.ร.น. กันนะคะ

ลำดับถัดไปจะนำน้องๆ ไปศึกษาวิธี การหา ค.ร.น. ทั้ง 3 วิธี ถ้าพร้อมแล้วมาเริ่มวิธีแรกกันเลยนะคะ

วิธีที่ 1 การหา ค.ร.น. โดยการหาผลคูณร่วม

หลักการ

  1. หาตัวตั้งหรือพหุคูณของจำนวนนับที่ต้องการหา ค.ร.น.
  2. พิจารณาตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุด
  3. ค.ร.น. คือ ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุด

เมื่อศึกษาหลักการหา ค.ร.น. โดยการหาผลคูณร่วม เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 1 จงหา ค.ร.น. ของ 2 และ 3                                                               

วิธีทำ พหุคูณของ 2   คือ  2, 4, 6, 8, 10, 12, 14, 16, 18, …                                                           

พหุคูณของ 3   คือ  3, 6, 9, 12, 15, 18, 21, 24, …                                                               

เรียก 6, 12, 18, … เป็นพหุคูณร่วมของ 2 และ 3                                                                     

พหุคูณที่น้อยที่สุดของ 2 และ 3  เรียกว่า ตัวคูณร่วมที่น้อยที่สุด ซึ่งเขียนย่อๆ  ว่า  ค.ร.น.

ดังนั้น  ค.ร.น. ของ 2 และ 3  คือ 6

ตัวอย่างที่ 2   จงหา ค.ร.น. ของ 2, 3  และ 4

วิธีทำ พหุคูณของ 2 คือ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, …

พหุคูณของ 3 คือ 3,  6,  9,  12,  15,  18,  21, 24, 27, …

พหุคูณของ 4  คือ  4,  8,  12,  16, 20,  24, 28, …

เพราะฉะนั้น พหุคูณร่วมของ 2, 3 และ 4 คือ 12 และ 24

นั่นคือ 12 เป็นพหุคูณร่วมที่น้อยที่สุดของ  2, 3 และ 4

ดังนั้น ค.ร.น. ของ 2, 3  และ  4  คือ  12

การหา ค.ร.น. โดยใช้วิธีที่ 1 ง่ายมากเลยใช่มั้ยค่ะ ต่อไปน้องๆ มาศึกษาวิธี การหา ค.ร.น. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 2 การหา ค.ร.น. โดยการแยกตัวประกอบ

หลักการ

  1. แยกตัวประกอบทั้งหมดของจำนวนนับที่ต้องการหา ค.ร.น. 
  2. พิจารณาตัวประกอบเฉพาะที่เป็นตัวประกอบร่วมของจำนวนนับที่จะหา ค.ร.น.
  3. พิจารณาตัวประกอบเฉพาะเดี่ยว ๆ
  4. นำตัวประกอบเฉพาะที่ได้จากข้อ 2. ทั้งหมด และข้อ 3. ทั้งหมด มาคูณกัน
  5. ค.ร.น. คือ ผลคูณในข้อ 4.

ตัวอย่างที่ 3  จงหา ค.ร.น. ของ  24  และ 32

ตัวอย่างที่  4   จงหา ค.ร.น. ของ 6, 10  และ 12

หมายเหตุ : จำนวนนับที่นำมาหา ค.ร.น. ถ้ามี 3 จำนวน ให้นำตัวซ้ำกัน 3 ตัวมา 1 ตัว และซ้ำกัน 2 ตัวมา  1 ตัว มาคูณกัน และคูณกับตัวที่เหลือที่ไม่ได้ซ้ำ ดังตัวอย่างข้างต้น  

จะดีกว่ามั้ยคะ ถ้ามีวิธีการที่จะสามารถหา ค.ร.น. ได้รวดเร็วยิ่งขึ้น แต่ทั้งนี้ทั้งนั้นขึ้นอยู่กับความถนัดของแต่ละบุคคลนะคะ น้องๆ ลองศึกษาวิธีสุดท้ายได้โดยใช้วิธีที่ 1 ง่ายมากเลยใช่มั้ยค่ะ ต่อไปน้องๆ มาศึกษาวิธี การหา ค.ร.น. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 3 การหา ค.ร.น. โดยการหาร (หารสั้น)   

หลักการ

  1. ในแต่ละขั้นตอนของการหาร จะต้องเลือกตัวหาร โดยเลือกจากจำนวนเฉพาะที่เป็นตัวประกอบร่วมอย่างน้อยสองจำนวน ซึ่งอาจมีหลายจำนวน ให้เลือกจำนวนใดไปหารก่อนก็ได้
  2. นำตัวหารที่ได้จากข้อ 1. มาหาร
  3. หารต่อไปเรื่อย ๆ จนกระทั่งไม่มีจำนวนเฉพาะที่เป็นตัวประกอบร่วมของสองจำนวนใด ๆ 
  4. ค.ร.น. คือ ผลคูณของจำนวนเฉพาะที่นำไปหารในแต่ละขั้นตอน และจำนวนที่เหลือจากการหารทั้งหมด

ตัวอย่างที่ 5 จงหา ค.ร.น. ของ 18, 24 และ 48

วิธีทำ        2) 18         24            48

3)  9        12         24

2) 3          4           8

2)  3          2           4

    3          1            2

ดังนั้น ค.ร.น. ของ 18, 24 และ 48 คือ 2 x 3 x 2 x 2 x 3 x 1 x 2 = 144

ตัวอย่างที่ 6 จงหา ค.ร.น. ของ 30, 18 และ 20                                 

วิธีทำ              2 )30    18     20    

5 )15      9     10

3 )  3     9      2

      1     3      2

ดังนั้น  ค.ร.น.  ของ   30, 18 และ 20  คือ  2 x 5 x 3 x 1 x 3 x 2 = 180

ตัวอย่างที่ 7 จงหา ค.ร.น. ของ 40, 48 และ 18

วิธีทำ          2 )40    48      18    

2 )20    24       9

3 )10    12       9

2 )10      4       3

     5      2       3

ดังนั้น  ค.ร.น.  ของ   40, 48 และ 18  คือ 2 x 2 x 3 x 2 x 5 x 2 x 3 = 720

ตัวอย่างเพิ่มเติม

ตัวอย่างที่ 8 จงหา ค.ร.น. ของ 13 และ 29

วิธีทำ  เนื่องจาก  13  เป็นจำนวนเฉพาะ  และ 13 หาร 29 ไม่ลงตัว

   จะได้ว่า  พหุคูณร่วมที่น้อยที่สุดของ  13 หาร 29 คือ 13 x 29 = 377

ดังนั้น ค.ร.น.  ของ  13  และ  29 คือ  377

ตัวอย่างที่ 9 จงหา ค.ร.น. ของ 53 และ 69

 วิธีทำ  เนื่องจาก  53  เป็นจำนวนเฉพาะ  และ 53 หาร 69 ไม่ลงตัว

   จะได้ว่า  พหุคูณร่วมที่น้อยที่สุดของ  53 หาร 69  คือ 53 x 69 = 3,657

ดังนั้น ค.ร.น.  ของ  53  และ  69 คือ  3,657

เมื่อน้องๆเรียนรู้เรื่อง ตัวคูณร่วมน้อย (ค.ร.น.) จาก ตัวอย่าง ค.ร.น. หลายๆตัวอย่าง จะเห็นได้ชัดว่า การหา ค.ร.น. ไม่ได้เป็นเรื่องยากอย่างที่คิด ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น. ซึ่งจะเป็นการฝึกน้องๆได้การวิเคราะห์โจทย์และเลือกใช้วิธีการแก้ปัญหาของโจทย์แต่ละข้อได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การหา ค.ร.น.

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา ตัวคูณร่วมน้อย (ค.ร.น.) ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค การหา ค.ร.น. รวมถึงการอธิบาย ตัวอย่าง ค.ร.น. และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การหารทศนิยมในระดับชั้นป.5

บทความนี้จะกล่าวถึงหลักการหารทศนิยม 2 รูปแบบก็คือ การหารทศนิยมด้วยจำนวนเต็ม และการหารทศนิยมด้วยทศนิยม หลังจากที่น้องๆ ได้อ่านบทความนี้แล้ว รับรองว่าจะทำให้เข้าใจการหารทศนิยมได้มากขึ้นและสามารถนำวิธีคิดไปแก้โจทย์การหารทศนิยมได้

การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่ใช้ในการเรียน

การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่ใช้ในการเรียน + การใช้ Can/ Could/ Should

สวัสดีค่ะนักเรียนชั้นม. 1 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่เจอบ่อยและการใช้ Can, Could, Should กันนะคะ ไปลุยกันเลย   มารู้จักกับประโยคคำสั่ง (Imperative sentence)     รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence Imperative sentence ในรูปแบบประโยคบอกเล่าจะ

นิราศภูเขาทอง ประวัติความเป็นมาของวรรณคดีที่แต่งโดยสุนทรภู่

นิราศภูเขาทอง   เชื่อว่าน้อง ๆ หลายคนคงจะเคยได้ยินเรื่องนิราศภูเขาทองผ่านหูกันมาบ้างไม่มากก็น้อย แต่น้อง ๆ ทราบหรือเปล่าคะว่านิราศภูเขาทองคืออะไร และมีที่มาอย่างไร ก่อนอื่นมาดูความหมายของนิราศกันก่อนนะคะ นิราศ คือวรรณคดีที่แต่งขึ้นเพื่อเล่าถึงการเดินจากที่หนึ่งไปอีกที่หนึ่ง โดยระหว่างการเดินทาง กวีก็จะนำสิ่งต่าง ๆ ที่ได้พบเห็น ไม่ว่าจะเป็นธรรมชาติ วิวทิวทัศน์หรือความเป็นอยู่ของผู้คนมาพรรณนา   หลังจากเข้าใจความหมายของนิราศแล้วก็ไปเริ่มเรียนรู้ประวัติความเป็นมาและเรื่องย่อของนิราศภูเขาทอง หนึ่งในกลอนนิราศที่ได้รับการยกย่องว่าแต่งดีที่สุดของสุนทรภู่กันเลยค่ะ   ประวัติความเป็นมา   สุนทรภู่แต่งนิราศภูเขาทองขึ้นมาในสมัยรัชสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่เจ้าหัว

พันธกิจของภาษา

พันธกิจของภาษา ความสำคัญและอิทธิพลของภาษาที่มีต่อมนุษย์

ภาษาที่มนุษย์ใช้กันอยู่ทุกวันนี้ไม่เพียงแต่เป็นเครื่องมือสื่อสาร แต่ยังเป็นเครื่องมือสื่อความหมาย ความต้องการ และความคิดของคน บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่อง พันธกิจของภาษา พร้อมความสำคัญและอิทธิพลของภาษาที่มีต่อมนุษย์ จะเป็นอย่างไรบ้างนั้นเราไปดูพร้อม ๆ กันเลยค่ะ   พันธกิจของภาษา   พันธกิจของภาษาคืออะไร?   พันธกิจของภาษา หมายถึง ประโยชน์หรือความสำคัญของภาษา ซึ่งประกอบไปด้วยความสำคัญหลัก ๆ ดังนี้ 1. ภาษาช่วยธำรงสังคม

ประโยคปฏิเสธรูปแบบอดีต

สวัสดีค่ะนักเรียน ม.2 ที่น่ารักทุกคน วันนี้ครูจะพาไปทบทวนเรื่อง ประโยคปฏิเสธรูปแบบอดีต ซึ่งเมื่อเล่าถึงเวลาในอดีตส่วนใหญ่แล้วเรามักเจอคำว่า yesterday (เมื่อวานนี้), 1998 (ปี ค.ศ. ที่ผ่านมานานแล้ว), last month (เดือนที่แล้ว)  และกลุ่มคำอื่นๆ ที่กำกับเวลาในอดีต ซึ่งเราจะเจอ Past Time Expressions ในกลุ่ม Past Tenses หรือ อดีตกาล

เสภาขุนช้างขุนแผน

เสภาขุนช้างขุนแผน จากนิทานชาวบ้านสู่วรรณคดีราชสำนัก

เสภาเรื่องขุนช้างขุนแผน ได้รับการยกย่องจากวรรณคดีสโมสรว่าเป็นยอดของกลอนเสภาและเป็นที่ยอมรับกันในหมู่นักวรรณคดีว่าเป็นเลิศทั้งในด้านเนื้อเรื่องและการประพันธ์ มีมากมายหลายตอน หลายสำนวนและหลายผู้แต่ง แต่บทเรียนที่น้อง ๆ จะได้ศึกษากันในวันนี้เป็น เสภาขุนช้างขุนแผน ตอน ขุนช้างถวายฎีกา จะมีเนื้อหาและความเป็นมาอย่างไรเราไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของ เสภาขุนช้างขุนแผน   ขุนช้างขุนแผนสันนิษฐานว่าเป็นเรื่องจริงที่เกิดขึ้นในสมัยอยุธยา จากพงศาวดารทำให้ทราบว่าขุนแผนรับราชการอยู่ในสมัยสมเด็จพระพันวษา หรือ สมเด็จพระรามาธิบดีที่ 2 ซึ่งครองราชย์ระหว่าง พ.ศ. 2034-พ.ศ 2072 ต่อมามีการนำเรื่องขุนช้างขุนแผนมาแต่งเป็นกลอนสุภาพและบทเสภาโดยใช้กรับเป็นเครื่องประกอบจังหวะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1