สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก หรือ \Sigma  เรียกว่า ซิกมา ( Sigma ) เราใช้เพื่อลดรูปการบวกกันของตัวเลข เนื่องจากว่าบางทีเป็นการบวกของจำนวนตัวเลข 100 พจน์ ถ้ามานั่งเขียนทีละตัวก็คงจะเยอะไป เราจึงจะใช้เครื่องหมายซิกมามาใช้เพื่อประหยัดเวลาในการเขียนนั่นเอง

เช่น 1 + 2 + 3 + 4 +5  สามารถเขียนแทนด้วย สัญลักษณ์แทนการบวก

1 + 1 + 1 + 1 + 1 + 1  สามารถเขียนแทนด้วย \sum_{i=1}^{6}1

 

สูตรผลร่วม

สูตรเหล่านี้จะทำให้น้องๆประหยัดเวลาในการทำโจทย์มากๆ เนื่องจากไม่ต้องมานั่งแทน n ทีละตัว แล้วนำมาบวกกัน แต่สามารถใช้สูตรนี้ในการหาผลรวมได้เลย ดังนั้นจำสูตรเหล่านี้ไว้ดีๆนะคะ

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

\sum_{i=1}^{n}i^{3}=(\frac{n(n+1)}{6})^{2}

***สูตรข้างต้นใช้ได้กับการบวกตั้งแต่ 1 ถึง n เท่านั้น***

สมบัติที่ควรรู้เกี่ยวกับ \Sigma

สมบัติเหล่านี้จะช่วยให้น้องๆคิดเลขได้ง่ายขึ้นและประหยัดเวลาในการทำโจทย์แต่ละข้อได้เยอะมากๆ

ให้ a_n,b_n เป็นลำดับของจำนวนจริงใดๆ

1)\sum_{n=1}^{k}c=kc        โดยที่ c เป็นค่าคงที่ใดๆ

2) สัญลักษณ์แทนการบวก

3)สัญลักษณ์แทนการบวก

4)\sum ca_n=c\sum a_n  โดยที่ c เป็นจำนวนจริงใดๆ

 

ตัวอย่างเกี่ยวกับสัญลักษณ์การบวก

1)จงหาค่าของ \sum_{n=1}^{4}5

วิธีทำ จากโจทย์เราจะใช้สมบัติของซิกมาข้อที่ 1 เนื่องจาก 5 เป็นค่าคงที่ สัญลักษณ์แทนการบวก

ดังนั้นจะได้ว่า \sum_{n=1}^{4}5=4(5)=20

 

2) จงหาค่าของ \sum_{n=1}^{50}(-1)

วิธีทำ ใช้สมบัติข้อที่ 1 เนื่องจาก -1 เป็นค่าคงที่  \sum_{n=1}^{k}c=kc จะได้

สัญลักษณ์แทนการบวก

 

3) ถ้า a_1+a_2+a_3+a_4=35 จงหาค่า \sum_{n=1}^{4}5a_n

วิธีทำ จากโจทย์จะเห็นว่า สัญลักษณ์แทนการบวก 

พิจารณา \sum_{n=1}^{4}5a_n โดยใช้สมบัติข้อที่ 4 \sum ca_n=c\sum a_n

ดังนั้นจะได้ \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n และเนื่องจากเรารู้ว่า a_1+a_2+a_3+a_4=\sum_{n=1}^{4}a_n=35  

ดังนั้น \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n=5(35)=175

 

4)  ให้ \sum_{n=1}^{10}a_n=55, \sum_{n=1}^{10}b_n=27,\sum_{n=1}^{10}c_n=-22 จงหา \sum_{n=1}^{10}[5a_n-2b_n-6c_n]

วิธีทำ  เราจะพิจารณาสิ่งที่โจทย์ถามก่อน นั่นก็คือ \sum_{n=1}^{10}[5a_n-2b_n-6c_n] เราจะเห็นว่าในวงเล็บนั้นเป็นลำดับที่กำลังลบกันอยู่และจากสมบัติของซิกมาเราสามารถกระจายซิกมาเข้าไปได้(สมบัติข้อที่ 3) จะได้ว่า

สัญลักษณ์แทนการบวก

และจากสมบัติข้อที่ 4 เราสามารถดึงข้าคงที่ออกมาไว้ข้างนอกซิกมาได้ จะได้ว่า

\sum_{n=1}^{10}5a_n-\sum_{n=1}^{10}2b_n-\sum_{n=1}^{10}6c_n=5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n 

จะเห็นว่าเราสามารถตอบได้แล้ว เพราะเราสามารถเอาสิ่งที่โจทย์กำหนดให้มาแทนค่าลงไปได้แล้วจะได้เป็น

5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n=5(55)-2(27)-6(-22)=353

ดังนั้น \sum_{n=1}^{10}[5a_n-2b_n-6c_n]=353

 

5) จงหาผลบวกของ 1 + 2 + 3 + 4 +…+ 64

วิธีทำ จากโจทย์เป็นการบวกกันของจำนวนนับตั้งแต่ 1 ถึง 64  และเราสามารถเขียน 1 + 2 + 3 + 4 +…+ 64 ให้อยู่ในรูปของซิกมาได้ จะได้ว่า

1 + 2 + 3 + 4 +…+ 64 = \sum_{i=1}^{64}i 

และจากสูตร สัญลักษณ์แทนการบวก  ในโจทย์ข้อนี้ n = 64   ดังนั้นจะได้ว่า

สัญลักษณ์แทนการบวก

ดังนั้น 1 + 2 + 3 + 4 +…+ 64 = 2,080

 

6) จงหาผลบวกของ 1^2+2^2+3^2+...+10^2

วิธีทำ จากโจทย์เป็นการบวกของกำลังสองของจำนวนนับตั้งแต่ 1 ถึง 10 และเราสามารถเขียน 1^2+2^2+3^2+...+10^2 ให้อยู่ในรูปของซิกมาได้

จะได้เป็น

1^2+2^2+3^2+...+10^2=\sum_{i=1}^{10}i^2

และจากสูตร  สัญลักษณ์แทนการบวก เราจะเห็นว่า n = 10 ดังนั้นจะได้

สัญลักษณ์แทนการบวก

ดังนั้น 1^2+2^2+3^2+...+10^2 = 385

 

สรุป จากตัวอย่างข้างต้นจะเห็นว่าสมบัติของซิกมาและสูตรเกี่ยวกับผลบวกนั้นมีประโยชน์ในการแก้โจทย์อย่างมาก ทำให้ประหยัดเวลาในการคำนวณ และทำให้โจทย์ที่เหมือนจะยากนั้นง่ายขึ้นอีกด้วย ดังนั้นน้องๆอย่าลืมจำสูตรและสมบัติเหล่านี้นะคะ

 

วิดีโอเกี่ยวกับ สัญลักษณ์แทนการบวก

น้องๆสามารถเรียนรู้เพิ่มเติมเกี่ยวกับซิกมาและสมบัติของซิกมาได้จากคลิปด้านล่างนี้เลยค่ะ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

รากที่สอง

รากที่สอง

การหารากที่สองของจำนวนจริงทำได้หลายวิธี สำหรับวิธีการคำนวณ นักเรียนจะได้เรียนในระดับชั้นที่สูงกว่านี้ สำหรับในชั้นนี้ นักเรียนอาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง การวัดความยาวส่วนโค้ง ในบทความนี้จะเป็นการวัดความยาวของวงกลม 1 หน่วย วงกลมหนึ่งหน่วย คือวงกลมที่มีจุดศูนย์กลางที่จุดกำเนิด และมีรัศมียาว 1 หน่วย จากสูตรของเส้นรอบวง คือ 2r ดังนั้นวงกลมหนึ่งหน่วย จะมีเส้นรอบวงยาว 2 และครึ่งวงกลมยาว   จุดปลายส่วนโค้ง   จากรูป จะได้ว่าจุด P เป็นจุดปลายส่วนโค้ง   จากที่เราได้ทำความรู้จักกับวงกลมหนึ่งหน่วยและจุดปลายส่วนโค้งแล้ว

NokAcademy_Finite and Non- Finite Verb

Finite and Non- Finite Verb

Hi guys! สวัสดีค่ะนักเรียนชั้นม.6 ทุกคน วันนี้ครูจะพาไปทบทวนการใช้ “Finite and Non- Finite Verb” ในภาษาอังกฤษกันจร้า ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า   คำเตือน: การเรียนเรื่องนี้จะทำให้นักเรียนมึนงงได้หากว่าพื้นฐานเรื่อง Part of speech, Subject , Tense, Voice และ Mood ของเราไม่แน่น

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

M1 การใช้ Verb Be

การใช้ Verb Be

สวัสดีค่ะนักเรียนชั้นม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Verb Be กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! ความหมาย   Verb be ในที่นี้จะแปลว่า Verb to be นะคะ แปลว่า เป็น อยู่ คือ ซึ่งหลัง verb to

โคลงอิศปปกรณำ

โคลงอิศปปกรณำ วรรณคดีร้อยแก้วที่แปลมาจากนิทานตะวันตก

ในบทเรียนก่อนหน้า น้อง ๆ ได้เรียนรู้เรื่องโคลงโสฬสไตรยางค์กับโคลงนฤทุมนาการกันไปแล้ว แต่โคลงสุภาษิตที่น้อง ๆ ชั้นมัธยมศึกษาปีที่ 2 จะได้เรียนไม่ได้หมดแค่นั้นนะคะ เพราะยังมีอีกหนึ่งโคลงสุภาษิตที่สำคัญไม่แพ้กันเลยคือ โคลงอิศปปกรณำ นั่นเองค่ะ โคลงสุภาษิตที่ชื่อดูอ่านยากเรื่องนี้จะมีที่มาอย่างไร สอนเรื่องอะไรเราบ้าง มีเนื้อหาอย่างไร ให้ข้อคิดแบบไหน ไปเรียนรู้พร้อมกันเลยค่ะ   ความหมายของ โคลงอิศปปกรณำ     โคลงอิศปปกรณำ อ่านว่า โคลง-อิด-สะ-ปะ-ปะ-กะ-ระ-นำ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1