คณิตศาสตร์

จากระดับชั้น ป.4 ถึง ม.6

ทุกๆ เนื้อหาในบทเรียนจะสอนโดยเหล่าคุณครูที่มากประสบการณ์ ดังนั้น คุณสามารถเข้าใจ และสามารถใช้เทคนิคได้เร็วมากขึ้น
ครูดาวNockAcademy


ติว คณิตศาสตร์ เรียนพิเศษ ออนไลน์

ประวัติการไลฟ์สอนยอดนิยม

สามารถกดย้อนดูคลิปที่เคยผ่านการไลฟ์สอนไปแล้ว เพื่อทบทวนอีกครั้ง

ผลตอบรับจากผู้ใช้งานจริง

เกี่ยวกับเนื้อหาของวิชาคณิตศาสตร์

เหล่าคุณครูมืออาชีพสอนให้เข้าใจง่าย แต่กระตือรือร้นซึ่งนั่นก็เป็น วิชาคณิตศาสตร์ของ NockAcademy เหล่านักเรียนสามารถมองถึงเนื้อหา และแก้ไขแบบฝึกหัดในระดับชั้น ป.5 ถึง ม.6 ในทุกๆหัวข้อ
ครูกรีซ NockAcademy
ภาษาอังกฤษ
ครูอุ้ม NockAcademy
ภาษาไทย

วิทยาศาสตร์

บริการของเรา

ทดลองใช้งานฟรี 3 วัน เพื่อเข้าถึงบริการของเราได้แบบไม่จำกัดวิชา!
มีบทเรียนมากกว่า 2,000+ คลิป 4,000+ แบบฝึกหัด และ ดูประวัติการไลฟ์สอน ได้ไม่จำกัด บนทุกอุปกรณ์

บทความวิชาคณิตศาสตร์

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

สมบัติการคูณจำนวนจริง

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

วงกลม

วงกลม

วงกลม วงกลม ประกอบด้วยจุดศูนย์กลาง (center) เส้นผ่านศูนย์กลาง และรัศมี (radius) สมการรูปแบบมาตรฐานของวงกลม สมการรูปแบบมาตรฐานของวงกลมที่มีจุดศูนย์กลางที่ (h, k) คือ (x-h)² + (y-k)² = r² จากสมการ จะได้ว่า มีจุดศูนย์กลางที่ (h, k) และรัศมี r จะเห็นว่าถ้าเรารู้สมการมาตรฐานเราจะรู้รัศมี